ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.04024
  4. Cited By
MAME : Model-Agnostic Meta-Exploration

MAME : Model-Agnostic Meta-Exploration

11 November 2019
Swaminathan Gurumurthy
Sumit Kumar
Katia Sycara
ArXivPDFHTML

Papers citing "MAME : Model-Agnostic Meta-Exploration"

25 / 25 papers shown
Title
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic
  Context Variables
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables
Kate Rakelly
Aurick Zhou
Deirdre Quillen
Chelsea Finn
Sergey Levine
OffRL
78
656
0
19 Mar 2019
NoRML: No-Reward Meta Learning
NoRML: No-Reward Meta Learning
Yuxiang Yang
Ken Caluwaerts
Atil Iscen
Jie Tan
Chelsea Finn
55
27
0
04 Mar 2019
Meta-Learning for Contextual Bandit Exploration
Meta-Learning for Contextual Bandit Exploration
Amr Sharaf
Hal Daumé
OffRL
29
12
0
23 Jan 2019
Self-supervised Learning of Image Embedding for Continuous Control
Self-supervised Learning of Image Embedding for Continuous Control
Carlos Florensa
Jonas Degrave
N. Heess
Jost Tobias Springenberg
Martin Riedmiller
SSL
53
53
0
03 Jan 2019
Learning to Learn How to Learn: Self-Adaptive Visual Navigation Using
  Meta-Learning
Learning to Learn How to Learn: Self-Adaptive Visual Navigation Using Meta-Learning
Mitchell Wortsman
Kiana Ehsani
Mohammad Rastegari
Ali Farhadi
Roozbeh Mottaghi
SSL
62
223
0
03 Dec 2018
ProMP: Proximal Meta-Policy Search
ProMP: Proximal Meta-Policy Search
Jonas Rothfuss
Dennis Lee
I. Clavera
Tamim Asfour
Pieter Abbeel
63
210
0
16 Oct 2018
Fast Context Adaptation via Meta-Learning
Fast Context Adaptation via Meta-Learning
L. Zintgraf
K. Shiarlis
Vitaly Kurin
Katja Hofmann
Shimon Whiteson
72
37
0
08 Oct 2018
A Study on Overfitting in Deep Reinforcement Learning
A Study on Overfitting in Deep Reinforcement Learning
Chiyuan Zhang
Oriol Vinyals
Rémi Munos
Samy Bengio
OffRL
OnRL
53
388
0
18 Apr 2018
On First-Order Meta-Learning Algorithms
On First-Order Meta-Learning Algorithms
Alex Nichol
Joshua Achiam
John Schulman
227
2,232
0
08 Mar 2018
Some Considerations on Learning to Explore via Meta-Reinforcement
  Learning
Some Considerations on Learning to Explore via Meta-Reinforcement Learning
Bradly C. Stadie
Ge Yang
Rein Houthooft
Xi Chen
Yan Duan
Yuhuai Wu
Pieter Abbeel
Ilya Sutskever
LRM
70
115
0
03 Mar 2018
Meta-Reinforcement Learning of Structured Exploration Strategies
Meta-Reinforcement Learning of Structured Exploration Strategies
Abhishek Gupta
Russell Mendonca
YuXuan Liu
Pieter Abbeel
Sergey Levine
OffRL
107
345
0
20 Feb 2018
DiCE: The Infinitely Differentiable Monte-Carlo Estimator
DiCE: The Infinitely Differentiable Monte-Carlo Estimator
Jakob N. Foerster
Gregory Farquhar
Maruan Al-Shedivat
Tim Rocktaschel
Eric Xing
Shimon Whiteson
46
97
0
14 Feb 2018
Learning to Compare: Relation Network for Few-Shot Learning
Learning to Compare: Relation Network for Few-Shot Learning
Flood Sung
Yongxin Yang
Li Zhang
Tao Xiang
Philip Torr
Timothy M. Hospedales
292
4,049
0
16 Nov 2017
Meta-Learning and Universality: Deep Representations and Gradient
  Descent can Approximate any Learning Algorithm
Meta-Learning and Universality: Deep Representations and Gradient Descent can Approximate any Learning Algorithm
Chelsea Finn
Sergey Levine
SSL
89
223
0
31 Oct 2017
Self-supervised Deep Reinforcement Learning with Generalized Computation
  Graphs for Robot Navigation
Self-supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation
G. Kahn
Adam R. Villaflor
Bosen Ding
Pieter Abbeel
Sergey Levine
SSL
86
287
0
29 Sep 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
478
19,019
0
20 Jul 2017
Curiosity-driven Exploration by Self-supervised Prediction
Curiosity-driven Exploration by Self-supervised Prediction
Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
LRM
SSL
106
2,436
0
15 May 2017
Molecular De Novo Design through Deep Reinforcement Learning
Molecular De Novo Design through Deep Reinforcement Learning
Marcus Olivecrona
T. Blaschke
Ola Engkvist
Hongming Chen
BDL
123
1,014
0
25 Apr 2017
Prototypical Networks for Few-shot Learning
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
295
8,130
0
15 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
823
11,899
0
09 Mar 2017
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
RL2^22: Fast Reinforcement Learning via Slow Reinforcement Learning
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
OffRL
91
1,018
0
09 Nov 2016
Deep Successor Reinforcement Learning
Deep Successor Reinforcement Learning
Tejas D. Kulkarni
A. Saeedi
Simanta Gautam
S. Gershman
66
209
0
08 Jun 2016
Benchmarking Deep Reinforcement Learning for Continuous Control
Benchmarking Deep Reinforcement Learning for Continuous Control
Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
OffRL
79
1,693
0
22 Apr 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
191
8,851
0
04 Feb 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
1