Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.04024
Cited By
MAME : Model-Agnostic Meta-Exploration
11 November 2019
Swaminathan Gurumurthy
Sumit Kumar
Katia Sycara
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MAME : Model-Agnostic Meta-Exploration"
25 / 25 papers shown
Title
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables
Kate Rakelly
Aurick Zhou
Deirdre Quillen
Chelsea Finn
Sergey Levine
OffRL
78
656
0
19 Mar 2019
NoRML: No-Reward Meta Learning
Yuxiang Yang
Ken Caluwaerts
Atil Iscen
Jie Tan
Chelsea Finn
55
27
0
04 Mar 2019
Meta-Learning for Contextual Bandit Exploration
Amr Sharaf
Hal Daumé
OffRL
29
12
0
23 Jan 2019
Self-supervised Learning of Image Embedding for Continuous Control
Carlos Florensa
Jonas Degrave
N. Heess
Jost Tobias Springenberg
Martin Riedmiller
SSL
53
53
0
03 Jan 2019
Learning to Learn How to Learn: Self-Adaptive Visual Navigation Using Meta-Learning
Mitchell Wortsman
Kiana Ehsani
Mohammad Rastegari
Ali Farhadi
Roozbeh Mottaghi
SSL
62
223
0
03 Dec 2018
ProMP: Proximal Meta-Policy Search
Jonas Rothfuss
Dennis Lee
I. Clavera
Tamim Asfour
Pieter Abbeel
63
210
0
16 Oct 2018
Fast Context Adaptation via Meta-Learning
L. Zintgraf
K. Shiarlis
Vitaly Kurin
Katja Hofmann
Shimon Whiteson
72
37
0
08 Oct 2018
A Study on Overfitting in Deep Reinforcement Learning
Chiyuan Zhang
Oriol Vinyals
Rémi Munos
Samy Bengio
OffRL
OnRL
53
388
0
18 Apr 2018
On First-Order Meta-Learning Algorithms
Alex Nichol
Joshua Achiam
John Schulman
227
2,232
0
08 Mar 2018
Some Considerations on Learning to Explore via Meta-Reinforcement Learning
Bradly C. Stadie
Ge Yang
Rein Houthooft
Xi Chen
Yan Duan
Yuhuai Wu
Pieter Abbeel
Ilya Sutskever
LRM
70
115
0
03 Mar 2018
Meta-Reinforcement Learning of Structured Exploration Strategies
Abhishek Gupta
Russell Mendonca
YuXuan Liu
Pieter Abbeel
Sergey Levine
OffRL
107
345
0
20 Feb 2018
DiCE: The Infinitely Differentiable Monte-Carlo Estimator
Jakob N. Foerster
Gregory Farquhar
Maruan Al-Shedivat
Tim Rocktaschel
Eric Xing
Shimon Whiteson
46
97
0
14 Feb 2018
Learning to Compare: Relation Network for Few-Shot Learning
Flood Sung
Yongxin Yang
Li Zhang
Tao Xiang
Philip Torr
Timothy M. Hospedales
292
4,049
0
16 Nov 2017
Meta-Learning and Universality: Deep Representations and Gradient Descent can Approximate any Learning Algorithm
Chelsea Finn
Sergey Levine
SSL
89
223
0
31 Oct 2017
Self-supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation
G. Kahn
Adam R. Villaflor
Bosen Ding
Pieter Abbeel
Sergey Levine
SSL
86
287
0
29 Sep 2017
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
478
19,019
0
20 Jul 2017
Curiosity-driven Exploration by Self-supervised Prediction
Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
LRM
SSL
106
2,436
0
15 May 2017
Molecular De Novo Design through Deep Reinforcement Learning
Marcus Olivecrona
T. Blaschke
Ola Engkvist
Hongming Chen
BDL
123
1,014
0
25 Apr 2017
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
295
8,130
0
15 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
823
11,899
0
09 Mar 2017
RL
2
^2
2
: Fast Reinforcement Learning via Slow Reinforcement Learning
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
OffRL
91
1,018
0
09 Nov 2016
Deep Successor Reinforcement Learning
Tejas D. Kulkarni
A. Saeedi
Simanta Gautam
S. Gershman
66
209
0
08 Jun 2016
Benchmarking Deep Reinforcement Learning for Continuous Control
Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
OffRL
79
1,693
0
22 Apr 2016
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
191
8,851
0
04 Feb 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
1