ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.03462
  4. Cited By
Knowledge Distillation for Incremental Learning in Semantic Segmentation
v1v2v3v4 (latest)

Knowledge Distillation for Incremental Learning in Semantic Segmentation

8 November 2019
Umberto Michieli
Pietro Zanuttigh
    CLLVLM
ArXiv (abs)PDFHTML

Papers citing "Knowledge Distillation for Incremental Learning in Semantic Segmentation"

40 / 40 papers shown
Title
Achieving Upper Bound Accuracy of Joint Training in Continual Learning
Achieving Upper Bound Accuracy of Joint Training in Continual Learning
Saleh Momeni
Bing Liu
CLL
152
1
0
17 Feb 2025
Heterogeneous Knowledge Distillation using Information Flow Modeling
Heterogeneous Knowledge Distillation using Information Flow Modeling
Nikolaos Passalis
Maria Tzelepi
Anastasios Tefas
61
139
0
02 May 2020
Adversarial Learning and Self-Teaching Techniques for Domain Adaptation
  in Semantic Segmentation
Adversarial Learning and Self-Teaching Techniques for Domain Adaptation in Semantic Segmentation
Umberto Michieli
Matteo Biasetton
Gianluca Agresti
Pietro Zanuttigh
GAN
52
58
0
02 Sep 2019
Online Continual Learning with Maximally Interfered Retrieval
Online Continual Learning with Maximally Interfered Retrieval
Rahaf Aljundi
Lucas Caccia
Eugene Belilovsky
Massimo Caccia
Min Lin
Laurent Charlin
Tinne Tuytelaars
CLL
76
542
0
11 Aug 2019
Incremental Learning Techniques for Semantic Segmentation
Incremental Learning Techniques for Semantic Segmentation
Umberto Michieli
Pietro Zanuttigh
SSegCLLVLM
92
234
0
31 Jul 2019
Similarity-Preserving Knowledge Distillation
Similarity-Preserving Knowledge Distillation
Frederick Tung
Greg Mori
120
978
0
23 Jul 2019
Continual Learning for Robotics: Definition, Framework, Learning
  Strategies, Opportunities and Challenges
Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges
Timothée Lesort
Vincenzo Lomonaco
Andrei Stoian
Davide Maltoni
David Filliat
Natalia Díaz Rodríguez
CLL
73
249
0
29 Jun 2019
Large Scale Incremental Learning
Large Scale Incremental Learning
Yue Wu
Yinpeng Chen
Lijuan Wang
Yuancheng Ye
Zicheng Liu
Yandong Guo
Y. Fu
CLL
98
1,257
0
30 May 2019
Incremental Learning Using a Grow-and-Prune Paradigm with Efficient
  Neural Networks
Incremental Learning Using a Grow-and-Prune Paradigm with Efficient Neural Networks
Xiaoliang Dai
Hongxu Yin
N. Jha
71
31
0
27 May 2019
Learning Metrics from Teachers: Compact Networks for Image Embedding
Learning Metrics from Teachers: Compact Networks for Image Embedding
Lu Yu
V. O. Yazici
Xialei Liu
Joost van de Weijer
Yongmei Cheng
Arnau Ramisa
55
108
0
07 Apr 2019
M2KD: Multi-model and Multi-level Knowledge Distillation for Incremental
  Learning
M2KD: Multi-model and Multi-level Knowledge Distillation for Incremental Learning
Peng Zhou
Long Mai
Jianming Zhang
N. Xu
Zuxuan Wu
L. Davis
CLLVLM
60
55
0
03 Apr 2019
RILOD: Near Real-Time Incremental Learning for Object Detection at the
  Edge
RILOD: Near Real-Time Incremental Learning for Object Detection at the Edge
Dawei Li
Serafettin Tasci
Shalini Ghosh
Jingwen Zhu
Junting Zhang
Larry Heck
ObjD
37
9
0
26 Mar 2019
Class-incremental Learning via Deep Model Consolidation
Class-incremental Learning via Deep Model Consolidation
Junting Zhang
Jie Zhang
Shalini Ghosh
Dawei Li
Serafettin Tasci
Larry Heck
Heming Zhang
C.-C. Jay Kuo
CLL
64
338
0
19 Mar 2019
Learning without Memorizing
Learning without Memorizing
Prithviraj Dhar
Rajat Vikram Singh
Kuan-Chuan Peng
Ziyan Wu
Rama Chellappa
CLL
85
486
0
20 Nov 2018
Incremental Learning for Semantic Segmentation of Large-Scale Remote
  Sensing Data
Incremental Learning for Semantic Segmentation of Large-Scale Remote Sensing Data
O. Tasar
Y. Tarabalka
Pierre Alliez
CLL
97
127
0
29 Oct 2018
End-to-End Incremental Learning
End-to-End Incremental Learning
F. M. Castro
M. Marín-Jiménez
Nicolás Guil Mata
Cordelia Schmid
Alahari Karteek
CLL
87
1,158
0
25 Jul 2018
Incremental Training of Deep Convolutional Neural Networks
Incremental Training of Deep Convolutional Neural Networks
R. Istrate
A. Malossi
C. Bekas
Dimitrios S. Nikolopoulos
CLL
51
21
0
27 Mar 2018
Continual Lifelong Learning with Neural Networks: A Review
Continual Lifelong Learning with Neural Networks: A Review
G. I. Parisi
Ronald Kemker
Jose L. Part
Christopher Kanan
S. Wermter
KELMCLL
190
2,888
0
21 Feb 2018
Tree-CNN: A Hierarchical Deep Convolutional Neural Network for
  Incremental Learning
Tree-CNN: A Hierarchical Deep Convolutional Neural Network for Incremental Learning
Deboleena Roy
Priyadarshini Panda
Kaushik Roy
BDLOODCLL
73
213
0
15 Feb 2018
Incremental Classifier Learning with Generative Adversarial Networks
Incremental Classifier Learning with Generative Adversarial Networks
Yue Wu
Yinpeng Chen
Lijuan Wang
Yuancheng Ye
Zicheng Liu
Yandong Guo
Zhengyou Zhang
Y. Fu
GAN
117
109
0
02 Feb 2018
Riemannian Walk for Incremental Learning: Understanding Forgetting and
  Intransigence
Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence
Arslan Chaudhry
P. Dokania
Thalaiyasingam Ajanthan
Philip Torr
CLL
102
1,141
0
30 Jan 2018
Incremental Learning in Deep Convolutional Neural Networks Using Partial
  Network Sharing
Incremental Learning in Deep Convolutional Neural Networks Using Partial Network Sharing
Syed Shakib Sarwar
Aayush Ankit
Kaushik Roy
CLL
62
109
0
07 Dec 2017
Memory Aware Synapses: Learning what (not) to forget
Memory Aware Synapses: Learning what (not) to forget
Rahaf Aljundi
F. Babiloni
Mohamed Elhoseiny
Marcus Rohrbach
Tinne Tuytelaars
KELMCLL
87
1,636
0
27 Nov 2017
Incremental Learning of Object Detectors without Catastrophic Forgetting
Incremental Learning of Object Detectors without Catastrophic Forgetting
K. Shmelkov
Cordelia Schmid
Alahari Karteek
ObjD
76
520
0
23 Aug 2017
Gradient Episodic Memory for Continual Learning
Gradient Episodic Memory for Continual Learning
David Lopez-Paz
MarcÁurelio Ranzato
VLMCLL
127
2,714
0
26 Jun 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,833
0
14 Jun 2017
Dilated Residual Networks
Dilated Residual Networks
Feng Yu
V. Koltun
Thomas Funkhouser
MedIm
121
1,619
0
28 May 2017
Continual Learning with Deep Generative Replay
Continual Learning with Deep Generative Replay
Hanul Shin
Jung Kwon Lee
Jaehong Kim
Jiwon Kim
KELMCLL
80
2,077
0
24 May 2017
A Review on Deep Learning Techniques Applied to Semantic Segmentation
A Review on Deep Learning Techniques Applied to Semantic Segmentation
Alberto Garcia-Garcia
Sergio Orts
Sergiu Oprea
Victor Villena-Martinez
Jose Garcia-Rodriguez
3DVSSeg
112
1,278
0
22 Apr 2017
Pyramid Scene Parsing Network
Pyramid Scene Parsing Network
Hengshuang Zhao
Jianping Shi
Xiaojuan Qi
Xiaogang Wang
Jiaya Jia
VOSSSeg
665
12,015
0
04 Dec 2016
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
369
7,518
0
02 Dec 2016
iCaRL: Incremental Classifier and Representation Learning
iCaRL: Incremental Classifier and Representation Learning
Sylvestre-Alvise Rebuffi
Alexander Kolesnikov
G. Sperl
Christoph H. Lampert
CLLOOD
148
3,761
0
23 Nov 2016
Learning without Forgetting
Learning without Forgetting
Zhizhong Li
Derek Hoiem
CLLOODSSL
298
4,408
0
29 Jun 2016
Active Long Term Memory Networks
Active Long Term Memory Networks
Tommaso Furlanello
Jiaping Zhao
Andrew M. Saxe
Laurent Itti
B. Tjan
KELMCLL
68
41
0
07 Jun 2016
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
  Atrous Convolution, and Fully Connected CRFs
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Patrick Murphy
Alan Yuille
SSeg
251
18,240
0
02 Jun 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNNAI4CE
433
18,361
0
27 May 2016
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOSSSeg
741
37,862
0
20 May 2016
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
362
19,660
0
09 Mar 2015
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
413
43,667
0
01 May 2014
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based
  Neural Networks
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks
Ian Goodfellow
M. Berk Mirza
Xia Da
Aaron Courville
Yoshua Bengio
149
1,449
0
21 Dec 2013
1