Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.02792
Cited By
Machine learning for molecular simulation
7 November 2019
Frank Noé
A. Tkatchenko
K. Müller
C. Clementi
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Machine learning for molecular simulation"
45 / 45 papers shown
Title
JaxSGMC: Modular stochastic gradient MCMC in JAX
Stephan Thaler
Paul Fuchs
Ana Cukarska
Julija Zavadlav
BDL
48
2
0
16 May 2025
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
59
4
0
12 Mar 2025
Investigating Data Hierarchies in Multifidelity Machine Learning for Excitation Energies
Vivin Vinod
Peter Zaspel
26
0
0
15 Oct 2024
Foundation Inference Models for Markov Jump Processes
David Berghaus
K. Cvejoski
Patrick Seifner
C. Ojeda
Ramses J. Sanchez
47
1
0
10 Jun 2024
Neural Thermodynamic Integration: Free Energies from Energy-based Diffusion Models
Bálint Máté
François Fleuret
Tristan Bereau
DiffM
46
2
0
04 Jun 2024
Morphological Symmetries in Robotics
Daniel Felipe Ordoñez Apraez
Giulio Turrisi
Vladimir Kostic
Mario Martin
Antonio Agudo
Francesc Moreno-Noguer
Massimiliano Pontil
Claudio Semini
Carlos Mastalli
AI4CE
42
6
0
23 Feb 2024
A new perspective on building efficient and expressive 3D equivariant graph neural networks
Weitao Du
Yuanqi Du
Limei Wang
Dieqiao Feng
Guifeng Wang
Shuiwang Ji
Carla P. Gomes
Zhixin Ma
AI4CE
42
34
0
07 Apr 2023
Multilevel CNNs for Parametric PDEs
Cosmas Heiß
Ingo Gühring
Martin Eigel
AI4CE
25
8
0
01 Apr 2023
Discovery of structure-property relations for molecules via hypothesis-driven active learning over the chemical space
Ayana Ghosh
Sergei V. Kalinin
M. Ziatdinov
17
8
0
06 Jan 2023
Reconstructing Kernel-based Machine Learning Force Fields with Super-linear Convergence
Stefan Blücher
Klaus-Robert Muller
Stefan Chmiela
19
4
0
24 Dec 2022
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
40
21
0
15 Dec 2022
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
29
59
0
11 Dec 2022
Equivariant Networks for Crystal Structures
Sekouba Kaba
Siamak Ravanbakhsh
AI4CE
48
24
0
15 Nov 2022
Towards Learned Simulators for Cell Migration
Koen Minartz
Y. Poels
Vlado Menkovski
37
1
0
02 Oct 2022
Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields
Niklas Schmitz
Klaus-Robert Muller
Stefan Chmiela
AI4CE
29
11
0
25 Aug 2022
Building Robust Machine Learning Models for Small Chemical Science Data: The Case of Shear Viscosity
Nikhil V. S. Avula
S. K. Veesam
Sudarshan Behera
S. Balasubramanian
24
8
0
23 Aug 2022
Deep Neural Network Approximation of Invariant Functions through Dynamical Systems
Qianxiao Li
T. Lin
Zuowei Shen
24
6
0
18 Aug 2022
Accelerating discrete dislocation dynamics simulations with graph neural networks
N. Bertin
Fei Zhou
AI4CE
26
9
0
05 Aug 2022
Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph Neural Networks
Simon Ohler
Daniel Brady
Winfried Lotzsch
M. Fleischhauer
Johannes Otterbach
AI4CE
30
1
0
05 Jul 2022
So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems
J. Frank
Oliver T. Unke
Klaus-Robert Muller
27
43
0
28 May 2022
Accurate Machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
Oliver T. Unke
M. Stohr
Stefan Ganscha
Thomas Unterthiner
Hartmut Maennel
...
Daniel Ahlin
M. Gastegger
L. M. Sandonas
A. Tkatchenko
Klaus-Robert Muller
AI4CE
45
18
0
17 May 2022
Transferring Chemical and Energetic Knowledge Between Molecular Systems with Machine Learning
Sajjad Heydari
S. Raniolo
L. Livi
V. Limongelli
32
2
0
06 May 2022
DiffMD: A Geometric Diffusion Model for Molecular Dynamics Simulations
Fang Wu
Stan Z. Li
DiffM
37
31
0
19 Apr 2022
Automatic Identification of Chemical Moieties
Jonas Lederer
M. Gastegger
Kristof T. Schütt
Michael C. Kampffmeyer
Klaus-Robert Muller
Oliver T. Unke
28
5
0
30 Mar 2022
Interactive Visualization of Protein RINs using NetworKit in the Cloud
Eugenio Angriman
Fabian Brandt-Tumescheit
Leon Franke
Alexander van der Grinten
Henning Meyerhenke
MLAU
6
1
0
02 Mar 2022
Toward Explainable AI for Regression Models
S. Letzgus
Patrick Wagner
Jonas Lederer
Wojciech Samek
Klaus-Robert Muller
G. Montavon
XAI
36
63
0
21 Dec 2021
Graph Neural Networks Accelerated Molecular Dynamics
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNN
AI4CE
32
53
0
06 Dec 2021
Scaling Up Machine Learning For Quantum Field Theory with Equivariant Continuous Flows
P. D. Haan
Corrado Rainone
Miranda C. N. Cheng
Roberto Bondesan
AI4CE
16
35
0
06 Oct 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
46
65
0
02 Jul 2021
BIGDML: Towards Exact Machine Learning Force Fields for Materials
H. E. Sauceda
Luis E Gálvez-González
Stefan Chmiela
L. O. Paz-Borbón
K. Müller
A. Tkatchenko
AI4CE
34
47
0
08 Jun 2021
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
Stephan Thaler
Julija Zavadlav
27
66
0
02 Jun 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
177
248
0
01 May 2021
Using Deep LSD to build operators in GANs latent space with meaning in real space
J. Q. Toledo-Marín
J. Glazier
GAN
22
3
0
09 Feb 2021
DeepDFT: Neural Message Passing Network for Accurate Charge Density Prediction
Peter Bjørn Jørgensen
Arghya Bhowmik
25
20
0
04 Nov 2020
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
34
888
0
14 Oct 2020
Set Prediction without Imposing Structure as Conditional Density Estimation
David W. Zhang
Gertjan J. Burghouts
Cees G. M. Snoek
51
17
0
08 Oct 2020
Deep Learning in Protein Structural Modeling and Design
Wenhao Gao
S. Mahajan
Jeremias Sulam
Jeffrey J. Gray
29
159
0
16 Jul 2020
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
25
258
0
10 Jul 2020
Conditional Set Generation with Transformers
Adam R. Kosiorek
Hyunjik Kim
Danilo Jimenez Rezende
24
40
0
26 Jun 2020
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Thomas Schnake
Oliver Eberle
Jonas Lederer
Shinichi Nakajima
Kristof T. Schütt
Klaus-Robert Muller
G. Montavon
34
217
0
05 Jun 2020
Ensemble Learning of Coarse-Grained Molecular Dynamics Force Fields with a Kernel Approach
Jiang Wang
Stefan Chmiela
K. Müller
Frank Noè
C. Clementi
8
46
0
04 May 2020
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
111
356
0
30 Oct 2017
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
251
1,787
0
02 Mar 2017
Variational Koopman models: slow collective variables and molecular kinetics from short off-equilibrium simulations
Hao Wu
Feliks Nuske
Fabian Paul
Stefan Klus
P. Koltai
Frank Noé
107
126
0
20 Oct 2016
1