ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.02490
  4. Cited By
OpenML-Python: an extensible Python API for OpenML

OpenML-Python: an extensible Python API for OpenML

6 November 2019
Matthias Feurer
Jan N. van Rijn
Arlind Kadra
Pieter Gijsbers
Neeratyoy Mallik
Sahithya Ravi
Andreas Müller
Joaquin Vanschoren
Frank Hutter
    ELM
    GP
ArXivPDFHTML

Papers citing "OpenML-Python: an extensible Python API for OpenML"

19 / 19 papers shown
Title
PCS-UQ: Uncertainty Quantification via the Predictability-Computability-Stability Framework
PCS-UQ: Uncertainty Quantification via the Predictability-Computability-Stability Framework
Abhineet Agarwal
Michael Xiao
Rebecca L. Barter
Omer Ronen
Boyu Fan
Bin Yu
34
0
0
13 May 2025
ALPBench: A Benchmark for Active Learning Pipelines on Tabular Data
ALPBench: A Benchmark for Active Learning Pipelines on Tabular Data
Valentin Margraf
Marcel Wever
Sandra Gilhuber
Gabriel Marques Tavares
Thomas Seidl
Eyke Hüllermeier
44
0
0
25 Jun 2024
A systematic study comparing hyperparameter optimization engines on
  tabular data
A systematic study comparing hyperparameter optimization engines on tabular data
Balazs Kegl
23
1
0
27 Nov 2023
Meta-learning of semi-supervised learning from tasks with heterogeneous
  attribute spaces
Meta-learning of semi-supervised learning from tasks with heterogeneous attribute spaces
Tomoharu Iwata
Atsutoshi Kumagai
26
2
0
09 Nov 2023
CAST: Cluster-Aware Self-Training for Tabular Data
CAST: Cluster-Aware Self-Training for Tabular Data
Minwook Kim
Juseong Kim
Kibeom Kim
Giltae Song
33
0
0
10 Oct 2023
Model Share AI: An Integrated Toolkit for Collaborative Machine Learning
  Model Development, Provenance Tracking, and Deployment in Python
Model Share AI: An Integrated Toolkit for Collaborative Machine Learning Model Development, Provenance Tracking, and Deployment in Python
Heinrich Peters
Michael Parrott
21
0
0
27 Sep 2023
OpenBox: A Python Toolkit for Generalized Black-box Optimization
OpenBox: A Python Toolkit for Generalized Black-box Optimization
Huaijun Jiang
Yu Shen
Yang Li
Beicheng Xu
Sixian Du
Wentao Zhang
Ce Zhang
Bin Cui
38
4
0
26 Apr 2023
Data-OOB: Out-of-bag Estimate as a Simple and Efficient Data Value
Data-OOB: Out-of-bag Estimate as a Simple and Efficient Data Value
Yongchan Kwon
James Zou
TDI
FedML
39
35
0
16 Apr 2023
Conceptual Views on Tree Ensemble Classifiers
Conceptual Views on Tree Ensemble Classifiers
Tom Hanika
Johannes Hirth
40
4
0
10 Feb 2023
Mind the Gap: Measuring Generalization Performance Across Multiple
  Objectives
Mind the Gap: Measuring Generalization Performance Across Multiple Objectives
Matthias Feurer
Katharina Eggensperger
Eddie Bergman
Florian Pfisterer
B. Bischl
Frank Hutter
51
5
0
08 Dec 2022
Boosted Off-Policy Learning
Boosted Off-Policy Learning
Ben London
Levi Lu
Ted Sandler
Thorsten Joachims
OffRL
46
4
0
01 Aug 2022
Data structure > labels? Unsupervised heuristics for SVM hyperparameter
  estimation
Data structure > labels? Unsupervised heuristics for SVM hyperparameter estimation
M. Cholewa
M. Romaszewski
P. Głomb
26
0
0
03 Nov 2021
abess: A Fast Best Subset Selection Library in Python and R
abess: A Fast Best Subset Selection Library in Python and R
Jin Zhu
Xueqin Wang
Liyuan Hu
Junhao Huang
Kangkang Jiang
Yanhang Zhang
Shiyun Lin
Junxian Zhu
21
22
0
19 Oct 2021
SCARF: Self-Supervised Contrastive Learning using Random Feature
  Corruption
SCARF: Self-Supervised Contrastive Learning using Random Feature Corruption
Dara Bahri
Heinrich Jiang
Yi Tay
Donald Metzler
SSL
19
163
0
29 Jun 2021
Unbiased Gradient Estimation for Distributionally Robust Learning
Unbiased Gradient Estimation for Distributionally Robust Learning
Soumyadip Ghosh
M. Squillante
OOD
21
7
0
22 Dec 2020
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
35
266
0
08 Jul 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
30
2,652
0
02 May 2020
Confident Learning: Estimating Uncertainty in Dataset Labels
Confident Learning: Estimating Uncertainty in Dataset Labels
Curtis G. Northcutt
Lu Jiang
Isaac L. Chuang
NoLa
38
674
0
31 Oct 2019
OpenML Benchmarking Suites
OpenML Benchmarking Suites
B. Bischl
Giuseppe Casalicchio
Matthias Feurer
Pieter Gijsbers
Frank Hutter
Michel Lang
R. G. Mantovani
Jan N. van Rijn
Joaquin Vanschoren
VLM
ELM
41
151
0
11 Aug 2017
1