ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.02278
  4. Cited By
Optimization with soft Dice can lead to a volumetric bias

Optimization with soft Dice can lead to a volumetric bias

6 November 2019
J. Bertels
D. Robben
Dirk Vandermeulen
P. Suetens
ArXivPDFHTML

Papers citing "Optimization with soft Dice can lead to a volumetric bias"

7 / 7 papers shown
Title
Theoretical analysis and experimental validation of volume bias of soft
  Dice optimized segmentation maps in the context of inherent uncertainty
Theoretical analysis and experimental validation of volume bias of soft Dice optimized segmentation maps in the context of inherent uncertainty
J. Bertels
D. Robben
Dirk Vandermeulen
P. Suetens
30
19
0
08 Nov 2022
Weakly Supervised Medical Image Segmentation With Soft Labels and Noise
  Robust Loss
Weakly Supervised Medical Image Segmentation With Soft Labels and Noise Robust Loss
B. Felfeliyan
A. Hareendranathan
G. Kuntze
S. Wichuk
Nils D. Forkert
Jacob L. Jaremko
J. Ronsky
NoLa
41
2
0
16 Sep 2022
Hypernet-Ensemble Learning of Segmentation Probability for Medical Image
  Segmentation with Ambiguous Labels
Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels
Sun-Beom Hong
A. Bonkhoff
Andrew Hoopes
Martin Bretzner
M. Schirmer
A. Giese
Adrian Dalca
Polina Golland
N. Rost
UQCV
30
7
0
13 Dec 2021
Calibrating the Dice loss to handle neural network overconfidence for
  biomedical image segmentation
Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation
Michael Yeung
L. Rundo
Yang Nan
Evis Sala
Carola-Bibiane Schönlieb
Guang Yang
UQCV
25
30
0
31 Oct 2021
Unified Focal loss: Generalising Dice and cross entropy-based losses to
  handle class imbalanced medical image segmentation
Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation
Michael Yeung
Evis Sala
Carola-Bibiane Schönlieb
L. Rundo
32
394
0
08 Feb 2021
SoftSeg: Advantages of soft versus binary training for image
  segmentation
SoftSeg: Advantages of soft versus binary training for image segmentation
C. Gros
A. Lemay
Julien Cohen-Adad
33
70
0
18 Nov 2020
Confidence Calibration and Predictive Uncertainty Estimation for Deep
  Medical Image Segmentation
Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation
Alireza Mehrtash
W. Wells
C. Tempany
Purang Abolmaesumi
Tina Kapur
OOD
FedML
UQCV
24
264
0
29 Nov 2019
1