ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.01511
  4. Cited By
Model uncertainty estimation using the expectation maximization
  algorithm and a particle flow filter

Model uncertainty estimation using the expectation maximization algorithm and a particle flow filter

4 November 2019
M. M. Lucini
P. Leeuwen
M. Pulido
ArXivPDFHTML

Papers citing "Model uncertainty estimation using the expectation maximization algorithm and a particle flow filter"

5 / 5 papers shown
Title
Kernel embedded nonlinear observational mappings in the variational
  mapping particle filter
Kernel embedded nonlinear observational mappings in the variational mapping particle filter
M. Pulido
P. Leeuwen
D. Posselt
57
8
0
29 Jan 2019
Inference of stochastic parameterizations for model error treatment
  using nested ensemble Kalman filters
Inference of stochastic parameterizations for model error treatment using nested ensemble Kalman filters
Guillermo Scheffler
J. J. Ruiz
M. Pulido
50
12
0
27 Jul 2018
Kernel embedding of maps for sequential Bayesian inference: The
  variational mapping particle filter
Kernel embedding of maps for sequential Bayesian inference: The variational mapping particle filter
M. Pulido
P. Leeuwen
BDL
56
11
0
29 May 2018
On Particle Methods for Parameter Estimation in State-Space Models
On Particle Methods for Parameter Estimation in State-Space Models
N. Kantas
Arnaud Doucet
Sumeetpal S. Singh
J. Maciejowski
Nicolas Chopin
67
434
0
30 Dec 2014
Approximations of the Optimal Importance Density using Gaussian Particle
  Flow Importance Sampling
Approximations of the Optimal Importance Density using Gaussian Particle Flow Importance Sampling
P. Bunch
S. Godsill
69
60
0
12 Jun 2014
1