Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.00937
Cited By
Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks
3 November 2019
Qiyang Li
Saminul Haque
Cem Anil
James Lucas
Roger C. Grosse
Joern-Henrik Jacobsen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks"
32 / 32 papers shown
Title
Enhancing Certified Robustness via Block Reflector Orthogonal Layers and Logit Annealing Loss
Bo-Han Lai
Pin-Han Huang
Bo-Han Kung
Shang-Tse Chen
12
0
0
21 May 2025
Parseval Convolution Operators and Neural Networks
Michael Unser
Stanislas Ducotterd
25
3
0
19 Aug 2024
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers
Jonas Ngnawé
Sabyasachi Sahoo
Y. Pequignot
Frédéric Precioso
Christian Gagné
AAML
42
0
0
26 Jun 2024
Bridging The Gap between Low-rank and Orthogonal Adaptation via Householder Reflection Adaptation
Shen Yuan
Haotian Liu
Hongteng Xu
44
2
0
24 May 2024
Graph Unitary Message Passing
Haiquan Qiu
Yatao Bian
Quanming Yao
42
2
0
17 Mar 2024
A PAC-Bayesian Link Between Generalisation and Flat Minima
Maxime Haddouche
Paul Viallard
Umut Simsekli
Benjamin Guedj
45
3
0
13 Feb 2024
Improve Robustness of Reinforcement Learning against Observation Perturbations via
l
∞
l_\infty
l
∞
Lipschitz Policy Networks
Buqing Nie
Jingtian Ji
Yangqing Fu
Yue Gao
48
4
0
14 Dec 2023
1-Lipschitz Neural Networks are more expressive with N-Activations
Bernd Prach
Christoph H. Lampert
AAML
FAtt
24
0
0
10 Nov 2023
LipSim: A Provably Robust Perceptual Similarity Metric
Sara Ghazanfari
Alexandre Araujo
Prashanth Krishnamurthy
Farshad Khorrami
Siddharth Garg
46
5
0
27 Oct 2023
Function-Space Optimality of Neural Architectures with Multivariate Nonlinearities
Rahul Parhi
Michael Unser
49
5
0
05 Oct 2023
Certified Robust Models with Slack Control and Large Lipschitz Constants
M. Losch
David Stutz
Bernt Schiele
Mario Fritz
14
4
0
12 Sep 2023
Robust low-rank training via approximate orthonormal constraints
Dayana Savostianova
Emanuele Zangrando
Gianluca Ceruti
Francesco Tudisco
29
9
0
02 Jun 2023
A Unified Algebraic Perspective on Lipschitz Neural Networks
Alexandre Araujo
Aaron J. Havens
Blaise Delattre
A. Allauzen
Bin Hu
AAML
36
53
0
06 Mar 2023
Robust One-Class Classification with Signed Distance Function using 1-Lipschitz Neural Networks
Louis Bethune
Paul Novello
Thibaut Boissin
Guillaume Coiffier
M. Serrurier
Quentin Vincenot
Andres Troya-Galvis
36
8
0
26 Jan 2023
Towards Practical Control of Singular Values of Convolutional Layers
Alexandra Senderovich
Ekaterina Bulatova
Anton Obukhov
M. Rakhuba
AAML
19
9
0
24 Nov 2022
Improved techniques for deterministic l2 robustness
Sahil Singla
S. Feizi
AAML
25
10
0
15 Nov 2022
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
35
12
0
28 Oct 2022
Dynamical systems' based neural networks
E. Celledoni
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
OOD
46
12
0
05 Oct 2022
Provably Adversarially Robust Nearest Prototype Classifiers
Václav Voráček
Matthias Hein
AAML
20
11
0
14 Jul 2022
Towards Evading the Limits of Randomized Smoothing: A Theoretical Analysis
Raphael Ettedgui
Alexandre Araujo
Rafael Pinot
Y. Chevaleyre
Jamal Atif
AAML
34
3
0
03 Jun 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
37
16
0
13 Apr 2022
projUNN: efficient method for training deep networks with unitary matrices
B. Kiani
Randall Balestriero
Yann LeCun
S. Lloyd
54
32
0
10 Mar 2022
On the Minimal Adversarial Perturbation for Deep Neural Networks with Provable Estimation Error
Fabio Brau
Giulio Rossolini
Alessandro Biondi
Giorgio Buttazzo
AAML
36
7
0
04 Jan 2022
GraN-GAN: Piecewise Gradient Normalization for Generative Adversarial Networks
Vineeth S. Bhaskara
Tristan Aumentado-Armstrong
Allan D. Jepson
Alex Levinshtein
GAN
43
5
0
04 Nov 2021
CC-Cert: A Probabilistic Approach to Certify General Robustness of Neural Networks
Mikhail Aleksandrovich Pautov
Nurislam Tursynbek
Marina Munkhoeva
Nikita Muravev
Aleksandr Petiushko
Ivan Oseledets
AAML
52
16
0
22 Sep 2021
Existence, Stability and Scalability of Orthogonal Convolutional Neural Networks
El Mehdi Achour
Franccois Malgouyres
Franck Mamalet
18
21
0
12 Aug 2021
Globally-Robust Neural Networks
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
80
126
0
16 Feb 2021
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo-wen Li
AAML
33
128
0
09 Sep 2020
Deep Isometric Learning for Visual Recognition
Haozhi Qi
Chong You
Xinyu Wang
Yi Ma
Jitendra Malik
VLM
35
54
0
30 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
30
28
0
02 Jun 2020
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
244
350
0
14 Jun 2018
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
249
1,842
0
03 Feb 2017
1