ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.00937
  4. Cited By
Preventing Gradient Attenuation in Lipschitz Constrained Convolutional
  Networks

Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks

3 November 2019
Qiyang Li
Saminul Haque
Cem Anil
James Lucas
Roger C. Grosse
Joern-Henrik Jacobsen
ArXivPDFHTML

Papers citing "Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks"

32 / 32 papers shown
Title
Enhancing Certified Robustness via Block Reflector Orthogonal Layers and Logit Annealing Loss
Enhancing Certified Robustness via Block Reflector Orthogonal Layers and Logit Annealing Loss
Bo-Han Lai
Pin-Han Huang
Bo-Han Kung
Shang-Tse Chen
12
0
0
21 May 2025
Parseval Convolution Operators and Neural Networks
Parseval Convolution Operators and Neural Networks
Michael Unser
Stanislas Ducotterd
25
3
0
19 Aug 2024
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in
  Deep Robust Classifiers
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers
Jonas Ngnawé
Sabyasachi Sahoo
Y. Pequignot
Frédéric Precioso
Christian Gagné
AAML
42
0
0
26 Jun 2024
Bridging The Gap between Low-rank and Orthogonal Adaptation via
  Householder Reflection Adaptation
Bridging The Gap between Low-rank and Orthogonal Adaptation via Householder Reflection Adaptation
Shen Yuan
Haotian Liu
Hongteng Xu
44
2
0
24 May 2024
Graph Unitary Message Passing
Graph Unitary Message Passing
Haiquan Qiu
Yatao Bian
Quanming Yao
42
2
0
17 Mar 2024
A PAC-Bayesian Link Between Generalisation and Flat Minima
A PAC-Bayesian Link Between Generalisation and Flat Minima
Maxime Haddouche
Paul Viallard
Umut Simsekli
Benjamin Guedj
45
3
0
13 Feb 2024
Improve Robustness of Reinforcement Learning against Observation
  Perturbations via $l_\infty$ Lipschitz Policy Networks
Improve Robustness of Reinforcement Learning against Observation Perturbations via l∞l_\inftyl∞​ Lipschitz Policy Networks
Buqing Nie
Jingtian Ji
Yangqing Fu
Yue Gao
48
4
0
14 Dec 2023
1-Lipschitz Neural Networks are more expressive with N-Activations
1-Lipschitz Neural Networks are more expressive with N-Activations
Bernd Prach
Christoph H. Lampert
AAML
FAtt
24
0
0
10 Nov 2023
LipSim: A Provably Robust Perceptual Similarity Metric
LipSim: A Provably Robust Perceptual Similarity Metric
Sara Ghazanfari
Alexandre Araujo
Prashanth Krishnamurthy
Farshad Khorrami
Siddharth Garg
46
5
0
27 Oct 2023
Function-Space Optimality of Neural Architectures with Multivariate Nonlinearities
Function-Space Optimality of Neural Architectures with Multivariate Nonlinearities
Rahul Parhi
Michael Unser
49
5
0
05 Oct 2023
Certified Robust Models with Slack Control and Large Lipschitz Constants
Certified Robust Models with Slack Control and Large Lipschitz Constants
M. Losch
David Stutz
Bernt Schiele
Mario Fritz
14
4
0
12 Sep 2023
Robust low-rank training via approximate orthonormal constraints
Robust low-rank training via approximate orthonormal constraints
Dayana Savostianova
Emanuele Zangrando
Gianluca Ceruti
Francesco Tudisco
29
9
0
02 Jun 2023
A Unified Algebraic Perspective on Lipschitz Neural Networks
A Unified Algebraic Perspective on Lipschitz Neural Networks
Alexandre Araujo
Aaron J. Havens
Blaise Delattre
A. Allauzen
Bin Hu
AAML
36
53
0
06 Mar 2023
Robust One-Class Classification with Signed Distance Function using
  1-Lipschitz Neural Networks
Robust One-Class Classification with Signed Distance Function using 1-Lipschitz Neural Networks
Louis Bethune
Paul Novello
Thibaut Boissin
Guillaume Coiffier
M. Serrurier
Quentin Vincenot
Andres Troya-Galvis
36
8
0
26 Jan 2023
Towards Practical Control of Singular Values of Convolutional Layers
Towards Practical Control of Singular Values of Convolutional Layers
Alexandra Senderovich
Ekaterina Bulatova
Anton Obukhov
M. Rakhuba
AAML
19
9
0
24 Nov 2022
Improved techniques for deterministic l2 robustness
Improved techniques for deterministic l2 robustness
Sahil Singla
S. Feizi
AAML
25
10
0
15 Nov 2022
Improving Lipschitz-Constrained Neural Networks by Learning Activation
  Functions
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
35
12
0
28 Oct 2022
Dynamical systems' based neural networks
Dynamical systems' based neural networks
E. Celledoni
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
OOD
46
12
0
05 Oct 2022
Provably Adversarially Robust Nearest Prototype Classifiers
Provably Adversarially Robust Nearest Prototype Classifiers
Václav Voráček
Matthias Hein
AAML
20
11
0
14 Jul 2022
Towards Evading the Limits of Randomized Smoothing: A Theoretical
  Analysis
Towards Evading the Limits of Randomized Smoothing: A Theoretical Analysis
Raphael Ettedgui
Alexandre Araujo
Rafael Pinot
Y. Chevaleyre
Jamal Atif
AAML
34
3
0
03 Jun 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
37
16
0
13 Apr 2022
projUNN: efficient method for training deep networks with unitary
  matrices
projUNN: efficient method for training deep networks with unitary matrices
B. Kiani
Randall Balestriero
Yann LeCun
S. Lloyd
54
32
0
10 Mar 2022
On the Minimal Adversarial Perturbation for Deep Neural Networks with
  Provable Estimation Error
On the Minimal Adversarial Perturbation for Deep Neural Networks with Provable Estimation Error
Fabio Brau
Giulio Rossolini
Alessandro Biondi
Giorgio Buttazzo
AAML
36
7
0
04 Jan 2022
GraN-GAN: Piecewise Gradient Normalization for Generative Adversarial
  Networks
GraN-GAN: Piecewise Gradient Normalization for Generative Adversarial Networks
Vineeth S. Bhaskara
Tristan Aumentado-Armstrong
Allan D. Jepson
Alex Levinshtein
GAN
43
5
0
04 Nov 2021
CC-Cert: A Probabilistic Approach to Certify General Robustness of
  Neural Networks
CC-Cert: A Probabilistic Approach to Certify General Robustness of Neural Networks
Mikhail Aleksandrovich Pautov
Nurislam Tursynbek
Marina Munkhoeva
Nikita Muravev
Aleksandr Petiushko
Ivan Oseledets
AAML
52
16
0
22 Sep 2021
Existence, Stability and Scalability of Orthogonal Convolutional Neural
  Networks
Existence, Stability and Scalability of Orthogonal Convolutional Neural Networks
El Mehdi Achour
Franccois Malgouyres
Franck Mamalet
18
21
0
12 Aug 2021
Globally-Robust Neural Networks
Globally-Robust Neural Networks
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
80
126
0
16 Feb 2021
SoK: Certified Robustness for Deep Neural Networks
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo-wen Li
AAML
33
128
0
09 Sep 2020
Deep Isometric Learning for Visual Recognition
Deep Isometric Learning for Visual Recognition
Haozhi Qi
Chong You
Xinyu Wang
Yi Ma
Jitendra Malik
VLM
35
54
0
30 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
30
28
0
02 Jun 2020
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
244
350
0
14 Jun 2018
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
249
1,842
0
03 Feb 2017
1