Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.00890
Cited By
Mean-field inference methods for neural networks
3 November 2019
Marylou Gabrié
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Mean-field inference methods for neural networks"
50 / 78 papers shown
Title
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
312
10,591
0
17 Feb 2020
Rademacher complexity and spin glasses: A link between the replica and statistical theories of learning
A. Abbara
Benjamin Aubin
Florent Krzakala
Lenka Zdeborová
132
13
0
05 Dec 2019
Large Deviation Analysis of Function Sensitivity in Random Deep Neural Networks
Bo Li
D. Saad
44
12
0
13 Oct 2019
Modelling the influence of data structure on learning in neural networks: the hidden manifold model
Sebastian Goldt
M. Mézard
Florent Krzakala
Lenka Zdeborová
BDL
57
51
0
25 Sep 2019
Disentangling feature and lazy training in deep neural networks
Mario Geiger
S. Spigler
Arthur Jacot
Matthieu Wyart
95
17
0
19 Jun 2019
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup
Sebastian Goldt
Madhu S. Advani
Andrew M. Saxe
Florent Krzakala
Lenka Zdeborová
MLT
98
143
0
18 Jun 2019
The spiked matrix model with generative priors
Benjamin Aubin
Bruno Loureiro
Antoine Maillard
Florent Krzakala
Lenka Zdeborová
55
53
0
29 May 2019
Generalized Approximate Survey Propagation for High-Dimensional Estimation
Luca Saglietti
Yue M. Lu
Carlo Lucibello
53
11
0
13 May 2019
Depth Separations in Neural Networks: What is Actually Being Separated?
Itay Safran
Ronen Eldan
Ohad Shamir
MDE
51
36
0
15 Apr 2019
Asymptotics of MAP Inference in Deep Networks
Parthe Pandit
Mojtaba Sahraee
S. Rangan
A. Fletcher
54
21
0
01 Mar 2019
A Mean Field Theory of Batch Normalization
Greg Yang
Jeffrey Pennington
Vinay Rao
Jascha Narain Sohl-Dickstein
S. Schoenholz
60
178
0
21 Feb 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
178
1,097
0
18 Feb 2019
Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
68
278
0
16 Feb 2019
Dynamical Isometry and a Mean Field Theory of LSTMs and GRUs
D. Gilboa
B. Chang
Minmin Chen
Greg Yang
S. Schoenholz
Ed H. Chi
Jeffrey Pennington
68
42
0
25 Jan 2019
Memory-free dynamics for the TAP equations of Ising models with arbitrary rotation invariant ensembles of random coupling matrices
Burak Çakmak
Manfred Opper
39
20
0
24 Jan 2019
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks
Umut Simsekli
Levent Sagun
Mert Gurbuzbalaban
82
247
0
18 Jan 2019
Deep Neural Network Approximation Theory
Dennis Elbrächter
Dmytro Perekrestenko
Philipp Grohs
Helmut Bölcskei
47
210
0
08 Jan 2019
Scaling description of generalization with number of parameters in deep learning
Mario Geiger
Arthur Jacot
S. Spigler
Franck Gabriel
Levent Sagun
Stéphane dÁscoli
Giulio Biroli
Clément Hongler
Matthieu Wyart
76
195
0
06 Jan 2019
Mean-field theory of graph neural networks in graph partitioning
T. Kawamoto
Masashi Tsubaki
T. Obuchi
67
58
0
29 Oct 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
54
308
0
11 Oct 2018
Phase Retrieval Under a Generative Prior
Paul Hand
Oscar Leong
V. Voroninski
55
189
0
11 Jul 2018
Approximate Survey Propagation for Statistical Inference
F. Antenucci
Florent Krzakala
Pierfrancesco Urbani
Lenka Zdeborová
64
21
0
03 Jul 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
234
3,191
0
20 Jun 2018
The committee machine: Computational to statistical gaps in learning a two-layers neural network
Benjamin Aubin
Antoine Maillard
Jean Barbier
Florent Krzakala
N. Macris
Lenka Zdeborová
67
106
0
14 Jun 2018
Assessing Generative Models via Precision and Recall
Mehdi S. M. Sajjadi
Olivier Bachem
Mario Lucic
Olivier Bousquet
Sylvain Gelly
EGVM
73
575
0
31 May 2018
Entropy and mutual information in models of deep neural networks
Marylou Gabrié
Andre Manoel
Clément Luneau
Jean Barbier
N. Macris
Florent Krzakala
Lenka Zdeborová
61
180
0
24 May 2018
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
Lénaïc Chizat
Francis R. Bach
OT
181
734
0
24 May 2018
A Solvable High-Dimensional Model of GAN
Chuang Wang
Hong Hu
Yue M. Lu
45
16
0
22 May 2018
Glassy nature of the hard phase in inference problems
F. Antenucci
S. Franz
Pierfrancesco Urbani
Lenka Zdeborová
36
29
0
15 May 2018
A Mean Field View of the Landscape of Two-Layers Neural Networks
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
81
857
0
18 Apr 2018
SUNLayer: Stable denoising with generative networks
D. Mixon
Soledad Villar
48
21
0
25 Mar 2018
A high-bias, low-variance introduction to Machine Learning for physicists
Pankaj Mehta
Marin Bukov
Ching-Hao Wang
A. G. Day
C. Richardson
Charles K. Fisher
D. Schwab
AI4CE
79
873
0
23 Mar 2018
Comparing Dynamics: Deep Neural Networks versus Glassy Systems
Marco Baity-Jesi
Levent Sagun
Mario Geiger
S. Spigler
Gerard Ben Arous
C. Cammarota
Yann LeCun
Matthieu Wyart
Giulio Biroli
AI4CE
92
114
0
19 Mar 2018
Thermodynamics of Restricted Boltzmann Machines and related learning dynamics
A. Decelle
G. Fissore
Cyril Furtlehner
AI4CE
72
42
0
05 Mar 2018
Mathematics of Deep Learning
René Vidal
Joan Bruna
Raja Giryes
Stefano Soatto
OOD
56
120
0
13 Dec 2017
Three Factors Influencing Minima in SGD
Stanislaw Jastrzebski
Zachary Kenton
Devansh Arpit
Nicolas Ballas
Asja Fischer
Yoshua Bengio
Amos Storkey
76
463
0
13 Nov 2017
On the role of synaptic stochasticity in training low-precision neural networks
Carlo Baldassi
Federica Gerace
H. Kappen
Carlo Lucibello
Luca Saglietti
Enzo Tartaglione
R. Zecchina
39
23
0
26 Oct 2017
Classification and Geometry of General Perceptual Manifolds
SueYeon Chung
Daniel D. Lee
H. Sompolinsky
52
154
0
17 Oct 2017
High-dimensional dynamics of generalization error in neural networks
Madhu S. Advani
Andrew M. Saxe
AI4CE
128
469
0
10 Oct 2017
Exploring the Function Space of Deep-Learning Machines
Yue Liu
D. Saad
PINN
47
25
0
04 Aug 2017
Inference in Deep Networks in High Dimensions
A. Fletcher
S. Rangan
BDL
103
69
0
20 Jun 2017
Streaming Bayesian inference: theoretical limits and mini-batch approximate message-passing
Andre Manoel
Florent Krzakala
Eric W. Tramel
Lenka Zdeborová
56
13
0
02 Jun 2017
Global Guarantees for Enforcing Deep Generative Priors by Empirical Risk
Paul Hand
V. Voroninski
UQCV
109
138
0
22 May 2017
Compressed Sensing using Generative Models
Ashish Bora
A. Jalal
Eric Price
A. Dimakis
120
808
0
09 Mar 2017
Opening the Black Box of Deep Neural Networks via Information
Ravid Shwartz-Ziv
Naftali Tishby
AI4CE
98
1,407
0
02 Mar 2017
Depth Separation for Neural Networks
Amit Daniely
MDE
37
74
0
27 Feb 2017
Phase Diagram of Restricted Boltzmann Machines and Generalised Hopfield Networks with Arbitrary Priors
Adriano Barra
G. Genovese
Peter Sollich
Daniele Tantari
43
69
0
20 Feb 2017
A Deterministic and Generalized Framework for Unsupervised Learning with Restricted Boltzmann Machines
Eric W. Tramel
Marylou Gabrié
Andre Manoel
F. Caltagirone
Florent Krzakala
AI4CE
51
32
0
10 Feb 2017
Multi-Layer Generalized Linear Estimation
Andre Manoel
Florent Krzakala
M. Mézard
Lenka Zdeborová
42
54
0
24 Jan 2017
Constrained Low-rank Matrix Estimation: Phase Transitions, Approximate Message Passing and Applications
T. Lesieur
Florent Krzakala
Lenka Zdeborová
109
127
0
03 Jan 2017
1
2
Next