Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.00870
Cited By
MadNet: Using a MAD Optimization for Defending Against Adversarial Attacks
3 November 2019
Shai Rozenberg
G. Elidan
Ran El-Yaniv
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MadNet: Using a MAD Optimization for Defending Against Adversarial Attacks"
15 / 15 papers shown
Title
When Does Label Smoothing Help?
Rafael Müller
Simon Kornblith
Geoffrey E. Hinton
UQCV
195
1,945
0
06 Jun 2019
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELM
AAML
83
901
0
18 Feb 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
147
2,038
0
08 Feb 2019
Evaluating and Understanding the Robustness of Adversarial Logit Pairing
Logan Engstrom
Andrew Ilyas
Anish Athalye
AAML
57
141
0
26 Jul 2018
Scaling provable adversarial defenses
Eric Wong
Frank R. Schmidt
J. H. Metzen
J. Zico Kolter
AAML
76
448
0
31 May 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
84
1,177
0
17 May 2018
Stochastic Activation Pruning for Robust Adversarial Defense
Guneet Singh Dhillon
Kamyar Azizzadenesheli
Zachary Chase Lipton
Jeremy Bernstein
Jean Kossaifi
Aran Khanna
Anima Anandkumar
AAML
76
547
0
05 Mar 2018
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
105
307
0
12 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
219
3,185
0
01 Feb 2018
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
304
12,063
0
19 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
121
1,857
0
20 May 2017
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
90
893
0
01 Mar 2017
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
61
950
0
14 Feb 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
540
5,897
0
08 Jul 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
75
3,677
0
08 Feb 2016
1