ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.00619
  4. Cited By
BIMC: The Bayesian Inverse Monte Carlo method for goal-oriented
  uncertainty quantification. Part I

BIMC: The Bayesian Inverse Monte Carlo method for goal-oriented uncertainty quantification. Part I

2 November 2019
Siddhant Wahal
George Biros
ArXivPDFHTML

Papers citing "BIMC: The Bayesian Inverse Monte Carlo method for goal-oriented uncertainty quantification. Part I"

7 / 7 papers shown
Title
hIPPYlib: An Extensible Software Framework for Large-Scale Inverse
  Problems Governed by PDEs; Part I: Deterministic Inversion and Linearized
  Bayesian Inference
hIPPYlib: An Extensible Software Framework for Large-Scale Inverse Problems Governed by PDEs; Part I: Deterministic Inversion and Linearized Bayesian Inference
Umberto Villa
N. Petra
Omar Ghattas
31
61
0
09 Sep 2019
Multifidelity probability estimation via fusion of estimators
Multifidelity probability estimation via fusion of estimators
Boris Kramer
A. Marques
Benjamin Peherstorfer
Umberto Villa
Karen E. Willcox
35
25
0
07 May 2019
Langevin Incremental Mixture Importance Sampling
Langevin Incremental Mixture Importance Sampling
Matteo Fasiolo
Flávio Eler De Melo
Simon Maskell
28
13
0
21 Nov 2016
Importance Sampling and Necessary Sample Size: an Information Theory
  Approach
Importance Sampling and Necessary Sample Size: an Information Theory Approach
D. Sanz-Alonso
37
32
0
31 Aug 2016
Goal-oriented optimal approximations of Bayesian linear inverse problems
Goal-oriented optimal approximations of Bayesian linear inverse problems
Alessio Spantini
Tiangang Cui
Karen E. Willcox
L. Tenorio
Youssef Marzouk
45
33
0
07 Jul 2016
Importance Sampling: Intrinsic Dimension and Computational Cost
Importance Sampling: Intrinsic Dimension and Computational Cost
S. Agapiou
O. Papaspiliopoulos
D. Sanz-Alonso
Andrew M. Stuart
64
161
0
19 Nov 2015
Scalable and efficient algorithms for the propagation of uncertainty
  from data through inference to prediction for large-scale problems, with
  application to flow of the Antarctic ice sheet
Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet
T. Isaac
N. Petra
G. Stadler
Omar Ghattas
PINN
54
153
0
05 Oct 2014
1