ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.00195
18
30

Rotation Invariant Point Cloud Classification: Where Local Geometry Meets Global Topology

1 November 2019
Chenchen Zhao
Jiaqi Yang
Xin Xiong
Angfan Zhu
Zhiguo Cao
Xin Li
    3DPC
ArXivPDFHTML
Abstract

Point cloud analysis is a fundamental task in 3D computer vision. Most previous works have conducted experiments on synthetic datasets with well-aligned data; while real-world point clouds are often not pre-aligned. How to achieve rotation invariance remains an open problem in point cloud analysis. To meet this challenge, we propose a novel approach toward achieving rotation-invariant (RI) representations by combining local geometry with global topology. In our local-global-representation (LGR)-Net, we have designed a two-branch network where one stream encodes local geometric RI features and the other encodes global topology-preserving RI features. Motivated by the observation that local geometry and global topology have different yet complementary RI responses in varying regions, two-branch RI features are fused by an innovative multi-layer perceptron (MLP) based attention module. To the best of our knowledge, this work is the first principled approach toward adaptively combining global and local information under the context of RI point cloud analysis. Extensive experiments have demonstrated that our LGR-Net achieves the state-of-the-art performance on various rotation-augmented versions of ModelNet40, ShapeNet, ScanObjectNN, and S3DIS.

View on arXiv
Comments on this paper