ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.00081
  4. Cited By
Scaling structural learning with NO-BEARS to infer causal transcriptome
  networks

Scaling structural learning with NO-BEARS to infer causal transcriptome networks

31 October 2019
Hao-Chih Lee
M. Danieletto
Riccardo Miotto
S. Cherng
J. Dudley
    CML
ArXivPDFHTML

Papers citing "Scaling structural learning with NO-BEARS to infer causal transcriptome networks"

8 / 8 papers shown
Title
Recovering Linear Causal Models with Latent Variables via Cholesky
  Factorization of Covariance Matrix
Recovering Linear Causal Models with Latent Variables via Cholesky Factorization of Covariance Matrix
Yunfeng Cai
Xu Li
Ming Sun
Ping Li
CML
21
1
0
01 Nov 2023
Learning DAGs from Data with Few Root Causes
Learning DAGs from Data with Few Root Causes
Panagiotis Misiakos
Chris Wendler
Markus Püschel
CML
40
10
0
25 May 2023
Truncated Matrix Power Iteration for Differentiable DAG Learning
Truncated Matrix Power Iteration for Differentiable DAG Learning
Zhen Zhang
Ignavier Ng
Dong Gong
Yuhang Liu
Ehsan Abbasnejad
Mingming Gong
Kun Zhang
Javen Qinfeng Shi
32
25
0
30 Aug 2022
Large-Scale Differentiable Causal Discovery of Factor Graphs
Large-Scale Differentiable Causal Discovery of Factor Graphs
Romain Lopez
Jan-Christian Hütter
J. Pritchard
Aviv Regev
CML
AI4CE
45
40
0
15 Jun 2022
Amortized Inference for Causal Structure Learning
Amortized Inference for Causal Structure Learning
Lars Lorch
Scott Sussex
Jonas Rothfuss
Andreas Krause
Bernhard Schölkopf
CML
26
60
0
25 May 2022
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
37
296
0
03 Mar 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To
  Game
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
15
136
0
26 Feb 2021
Efficient and Scalable Structure Learning for Bayesian Networks:
  Algorithms and Applications
Efficient and Scalable Structure Learning for Bayesian Networks: Algorithms and Applications
Rong Zhu
A. Pfadler
Ziniu Wu
Yuxing Han
Xiaoke Yang
Feng Ye
Zhenping Qian
Jingren Zhou
Bin Cui
18
9
0
07 Dec 2020
1