ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.14634
  4. Cited By
Denoising and Regularization via Exploiting the Structural Bias of
  Convolutional Generators

Denoising and Regularization via Exploiting the Structural Bias of Convolutional Generators

31 October 2019
Reinhard Heckel
Mahdi Soltanolkotabi
    DiffM
ArXivPDFHTML

Papers citing "Denoising and Regularization via Exploiting the Structural Bias of Convolutional Generators"

14 / 14 papers shown
Title
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Hongwei Tan
Ziruo Cai
Marcelo Pereyra
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
SSL
70
1
0
08 Apr 2024
Paint-it: Text-to-Texture Synthesis via Deep Convolutional Texture Map
  Optimization and Physically-Based Rendering
Paint-it: Text-to-Texture Synthesis via Deep Convolutional Texture Map Optimization and Physically-Based Rendering
Youwang Kim
Tae-Hyun Oh
Gerard Pons-Moll
DiffM
19
47
0
18 Dec 2023
Unsupervised Superpixel Generation using Edge-Sparse Embedding
Unsupervised Superpixel Generation using Edge-Sparse Embedding
Jakob Geusen
G. Bredell
Tianfei Zhou
E. Konukoglu
SupR
10
0
0
28 Nov 2022
Practical Phase Retrieval Using Double Deep Image Priors
Practical Phase Retrieval Using Double Deep Image Priors
Zhong Zhuang
David Yang
F. Hofmann
David A. Barmherzig
Ju Sun
33
13
0
02 Nov 2022
Scale-Agnostic Super-Resolution in MRI using Feature-Based Coordinate
  Networks
Scale-Agnostic Super-Resolution in MRI using Feature-Based Coordinate Networks
Dave Van Veen
Rogier van der Sluijs
Batu Mehmet Ozturkler
Arjun D Desai
Christian Blüthgen
...
Gordon Wetzstein
David B. Lindell
S. Vasanawala
John M. Pauly
Akshay S. Chaudhari
SupR
MedIm
23
7
0
17 Oct 2022
On the Spectral Bias of Convolutional Neural Tangent and Gaussian
  Process Kernels
On the Spectral Bias of Convolutional Neural Tangent and Gaussian Process Kernels
Amnon Geifman
Meirav Galun
David Jacobs
Ronen Basri
30
13
0
17 Mar 2022
Image-to-Image MLP-mixer for Image Reconstruction
Image-to-Image MLP-mixer for Image Reconstruction
Youssef Mansour
Kang Lin
Reinhard Heckel
SupR
31
15
0
04 Feb 2022
Early Stopping for Deep Image Prior
Early Stopping for Deep Image Prior
Hengkang Wang
Taihui Li
Zhong Zhuang
Tiancong Chen
Hengyue Liang
Ju Sun
23
63
0
11 Dec 2021
ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image
  Prior
ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior
Metin Ersin Arican
Ozgur Kara
G. Bredell
E. Konukoglu
27
17
0
27 Nov 2021
Untrained Graph Neural Networks for Denoising
Untrained Graph Neural Networks for Denoising
Samuel Rey
Santiago Segarra
Reinhard Heckel
A. Marques
32
28
0
24 Sep 2021
On Measuring and Controlling the Spectral Bias of the Deep Image Prior
On Measuring and Controlling the Spectral Bias of the Deep Image Prior
Prithvijit Chakrabarty
Pascal Mettes
Subhransu Maji
Cees G. M. Snoek
13
60
0
02 Jul 2021
Deep Learning Techniques for Inverse Problems in Imaging
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
11
520
0
12 May 2020
Compressive sensing with un-trained neural networks: Gradient descent
  finds the smoothest approximation
Compressive sensing with un-trained neural networks: Gradient descent finds the smoothest approximation
Reinhard Heckel
Mahdi Soltanolkotabi
6
79
0
07 May 2020
Computed Tomography Reconstruction Using Deep Image Prior and Learned
  Reconstruction Methods
Computed Tomography Reconstruction Using Deep Image Prior and Learned Reconstruction Methods
Daniel Otero Baguer
Johannes Leuschner
Maximilian Schmidt
29
186
0
10 Mar 2020
1