ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.14354
  4. Cited By
Recovering Bandits

Recovering Bandits

31 October 2019
Ciara Pike-Burke
Steffen Grunewalder
ArXiv (abs)PDFHTML

Papers citing "Recovering Bandits"

14 / 14 papers shown
Title
Preferences Evolve And So Should Your Bandits: Bandits with Evolving States for Online Platforms
Preferences Evolve And So Should Your Bandits: Bandits with Evolving States for Online Platforms
Khashayar Khosravi
R. Leme
Chara Podimata
Apostolis Tsorvantzis
69
0
0
21 Jul 2023
Discrepancy-Based Algorithms for Non-Stationary Rested Bandits
Corinna Cortes
Giulia DeSalvo
Vitaly Kuznetsov
M. Mohri
Scott Yang
109
19
0
29 Oct 2017
Taming Non-stationary Bandits: A Bayesian Approach
Taming Non-stationary Bandits: A Bayesian Approach
Vishnu Raj
Sheetal Kalyani
112
76
0
31 Jul 2017
Non-Stationary Bandits with Habituation and Recovery Dynamics
Non-Stationary Bandits with Habituation and Recovery Dynamics
Yonatan Dov Mintz
A. Aswani
Philip M. Kaminsky
E. Flowers
Yoshimi Fukuoka
186
57
0
26 Jul 2017
Minimax Regret Bounds for Reinforcement Learning
Minimax Regret Bounds for Reinforcement Learning
M. G. Azar
Ian Osband
Rémi Munos
92
778
0
16 Mar 2017
Rotting Bandits
Rotting Bandits
Nir Levine
K. Crammer
Shie Mannor
56
102
0
23 Feb 2017
Time-Varying Gaussian Process Bandit Optimization
Time-Varying Gaussian Process Bandit Optimization
Ilija Bogunovic
Jonathan Scarlett
Volkan Cevher
111
98
0
25 Jan 2016
Multi-armed Bandit Problem with Known Trend
Multi-armed Bandit Problem with Known Trend
Djallel Bouneffouf
Raphael Feraud
37
83
0
28 Aug 2015
(More) Efficient Reinforcement Learning via Posterior Sampling
(More) Efficient Reinforcement Learning via Posterior Sampling
Ian Osband
Daniel Russo
Benjamin Van Roy
137
535
0
04 Jun 2013
Learning to Optimize Via Posterior Sampling
Learning to Optimize Via Posterior Sampling
Daniel Russo
Benjamin Van Roy
206
703
0
11 Jan 2013
Kullback-Leibler upper confidence bounds for optimal sequential
  allocation
Kullback-Leibler upper confidence bounds for optimal sequential allocation
Olivier Cappé
Aurélien Garivier
Odalric-Ambrym Maillard
Rémi Munos
Gilles Stoltz
129
395
0
03 Oct 2012
Thompson Sampling for Contextual Bandits with Linear Payoffs
Thompson Sampling for Contextual Bandits with Linear Payoffs
Shipra Agrawal
Navin Goyal
204
1,006
0
15 Sep 2012
Gaussian Process Optimization in the Bandit Setting: No Regret and
  Experimental Design
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
Niranjan Srinivas
Andreas Krause
Sham Kakade
Matthias Seeger
154
1,624
0
21 Dec 2009
On Upper-Confidence Bound Policies for Non-Stationary Bandit Problems
On Upper-Confidence Bound Policies for Non-Stationary Bandit Problems
Aurélien Garivier
Eric Moulines
97
294
0
22 May 2008
1