Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.14216
Cited By
A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models
31 October 2019
Yang Wu
Pengxu Wei
Liang Lin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models"
10 / 10 papers shown
Title
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
330
6,453
0
26 Nov 2020
Improved Techniques for Training Score-Based Generative Models
Yang Song
Stefano Ermon
DiffM
218
1,151
0
16 Jun 2020
Training Generative Adversarial Networks with Limited Data
Tero Karras
M. Aittala
Janne Hellsten
S. Laine
J. Lehtinen
Timo Aila
GAN
146
1,884
0
11 Jun 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
230
3,902
0
12 Jul 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
560
10,551
0
12 Dec 2018
"Double-DIP": Unsupervised Image Decomposition via Coupled Deep-Image-Priors
Yossi Gandelsman
Assaf Shocher
Michal Irani
66
310
0
02 Dec 2018
Learning Energy-Based Models as Generative ConvNets via Multi-grid Modeling and Sampling
Ruiqi Gao
Yang Lu
Junpei Zhou
Song-Chun Zhu
Ying Nian Wu
74
79
0
26 Sep 2017
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
65
1,092
0
16 Aug 2016
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
250
14,008
0
19 Nov 2015
MCMC using Hamiltonian dynamics
Radford M. Neal
290
3,281
0
09 Jun 2012
1