ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.14179
  4. Cited By
Heteroscedastic Calibration of Uncertainty Estimators in Deep Learning

Heteroscedastic Calibration of Uncertainty Estimators in Deep Learning

30 October 2019
Bindya Venkatesh
Jayaraman J. Thiagarajan
    UQCV
ArXivPDFHTML

Papers citing "Heteroscedastic Calibration of Uncertainty Estimators in Deep Learning"

5 / 5 papers shown
Title
Bayesian Autoencoders for Drift Detection in Industrial Environments
Bayesian Autoencoders for Drift Detection in Industrial Environments
Bang Xiang Yong
Yasmin Fathy
Alexandra Brintrup
UQCV
27
8
0
28 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
66
1,115
0
07 Jul 2021
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,242
0
24 Jun 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
280
5,695
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
289
9,167
0
06 Jun 2015
1