ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.14139
12
43

FutureMapping 2: Gaussian Belief Propagation for Spatial AI

30 October 2019
Andrew J. Davison
Joseph Ortiz
ArXivPDFHTML
Abstract

We argue the case for Gaussian Belief Propagation (GBP) as a strong algorithmic framework for the distributed, generic and incremental probabilistic estimation we need in Spatial AI as we aim at high performance smart robots and devices which operate within the constraints of real products. Processor hardware is changing rapidly, and GBP has the right character to take advantage of highly distributed processing and storage while estimating global quantities, as well as great flexibility. We present a detailed tutorial on GBP, relating to the standard factor graph formulation used in robotics and computer vision, and give several simulation examples with code which demonstrate its properties.

View on arXiv
Comments on this paper