ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.12370
  4. Cited By
Input-Cell Attention Reduces Vanishing Saliency of Recurrent Neural
  Networks

Input-Cell Attention Reduces Vanishing Saliency of Recurrent Neural Networks

27 October 2019
Aya Abdelsalam Ismail
Mohamed K. Gunady
L. Pessoa
H. C. Bravo
S. Feizi
    AI4TS
ArXivPDFHTML

Papers citing "Input-Cell Attention Reduces Vanishing Saliency of Recurrent Neural Networks"

7 / 7 papers shown
Title
Explainable AI needs formal notions of explanation correctness
Explainable AI needs formal notions of explanation correctness
Stefan Haufe
Rick Wilming
Benedict Clark
Rustam Zhumagambetov
Danny Panknin
Ahcène Boubekki
XAI
31
1
0
22 Sep 2024
SCAAT: Improving Neural Network Interpretability via Saliency
  Constrained Adaptive Adversarial Training
SCAAT: Improving Neural Network Interpretability via Saliency Constrained Adaptive Adversarial Training
Rui Xu
Wenkang Qin
Peixiang Huang
Hao Wang
Lin Luo
FAtt
AAML
28
2
0
09 Nov 2023
Data-Centric Debugging: mitigating model failures via targeted data
  collection
Data-Centric Debugging: mitigating model failures via targeted data collection
Sahil Singla
Atoosa Malemir Chegini
Mazda Moayeri
Soheil Feiz
21
4
0
17 Nov 2022
BolT: Fused Window Transformers for fMRI Time Series Analysis
BolT: Fused Window Transformers for fMRI Time Series Analysis
H. Bedel
Irmak Sivgin
Onat Dalmaz
S. Dar
Tolga Çukur
59
54
0
23 May 2022
Improving Deep Learning Interpretability by Saliency Guided Training
Improving Deep Learning Interpretability by Saliency Guided Training
Aya Abdelsalam Ismail
H. C. Bravo
S. Feizi
FAtt
20
79
0
29 Nov 2021
TimeSHAP: Explaining Recurrent Models through Sequence Perturbations
TimeSHAP: Explaining Recurrent Models through Sequence Perturbations
João Bento
Pedro Saleiro
André F. Cruz
Mário A. T. Figueiredo
P. Bizarro
FAtt
AI4TS
16
88
0
30 Nov 2020
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1