Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.12061
Cited By
Variational Student: Learning Compact and Sparser Networks in Knowledge Distillation Framework
26 October 2019
Srinidhi Hegde
Ranjitha Prasad
R. Hebbalaguppe
Vishwajith Kumar
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Student: Learning Compact and Sparser Networks in Knowledge Distillation Framework"
11 / 11 papers shown
Title
Variational Bayesian dropout: pitfalls and fixes
Jiri Hron
A. G. Matthews
Zoubin Ghahramani
BDL
93
67
0
05 Jul 2018
Learning Intrinsic Sparse Structures within Long Short-Term Memory
W. Wen
Yuxiong He
Samyam Rajbhandari
Minjia Zhang
Wenhan Wang
Fang Liu
Bin Hu
Yiran Chen
H. Li
MQ
118
142
0
15 Sep 2017
Bayesian Compression for Deep Learning
Christos Louizos
Karen Ullrich
Max Welling
UQCV
BDL
195
481
0
24 May 2017
Variational Dropout Sparsifies Deep Neural Networks
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
176
831
0
19 Jan 2017
Learning Structured Sparsity in Deep Neural Networks
W. Wen
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
189
2,341
0
12 Aug 2016
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
263
8,862
0
01 Oct 2015
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
316
6,709
0
08 Jun 2015
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
229
1,517
0
08 Jun 2015
FitNets: Hints for Thin Deep Nets
Adriana Romero
Nicolas Ballas
Samira Ebrahimi Kahou
Antoine Chassang
C. Gatta
Yoshua Bengio
FedML
322
3,906
0
19 Dec 2014
Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation
Emily L. Denton
Wojciech Zaremba
Joan Bruna
Yann LeCun
Rob Fergus
FAtt
179
1,693
0
02 Apr 2014
Do Deep Nets Really Need to be Deep?
Lei Jimmy Ba
R. Caruana
188
2,120
0
21 Dec 2013
1