ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.11160
  4. Cited By
Stochastic Channel-Based Federated Learning for Medical Data Privacy
  Preserving
v1v2v3 (latest)

Stochastic Channel-Based Federated Learning for Medical Data Privacy Preserving

23 October 2019
Rulin Shao
Hongyu Hè
Hui Liu
Dianbo Liu
    FedMLOOD
ArXiv (abs)PDFHTML

Papers citing "Stochastic Channel-Based Federated Learning for Medical Data Privacy Preserving"

16 / 16 papers shown
Title
Towards Federated Learning at Scale: System Design
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
121
2,666
0
04 Feb 2019
Applied Federated Learning: Improving Google Keyboard Query Suggestions
Applied Federated Learning: Improving Google Keyboard Query Suggestions
Timothy Yang
Galen Andrew
Hubert Eichner
Haicheng Sun
Wei Li
Nicholas Kong
Daniel Ramage
F. Beaufays
FedML
87
626
0
07 Dec 2018
Federated Learning for Mobile Keyboard Prediction
Federated Learning for Mobile Keyboard Prediction
Andrew Straiton Hard
Kanishka Rao
Zhifeng Lin
Swaroop Indra Ramaswamy
Youjie Li
S. Augenstein
Alex Schwing
M. Annavaram
A. Avestimehr
FedML
136
1,545
0
08 Nov 2018
How To Backdoor Federated Learning
How To Backdoor Federated Learning
Eugene Bagdasaryan
Andreas Veit
Yiqing Hua
D. Estrin
Vitaly Shmatikov
SILMFedML
97
1,922
0
02 Jul 2018
Differentially Private Federated Learning: A Client Level Perspective
Differentially Private Federated Learning: A Client Level Perspective
Robin C. Geyer
T. Klein
Moin Nabi
FedML
133
1,297
0
20 Dec 2017
Designing Energy-Efficient Convolutional Neural Networks using
  Energy-Aware Pruning
Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning
Tien-Ju Yang
Yu-hsin Chen
Vivienne Sze
3DV
89
740
0
16 Nov 2016
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
306
4,649
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
143
1,902
0
08 Oct 2016
AIDE: Fast and Communication Efficient Distributed Optimization
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
58
150
0
24 Aug 2016
Network Trimming: A Data-Driven Neuron Pruning Approach towards
  Efficient Deep Architectures
Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures
Hengyuan Hu
Rui Peng
Yu-Wing Tai
Chi-Keung Tang
72
891
0
12 Jul 2016
Deep Learning with Differential Privacy
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedMLSyDa
216
6,130
0
01 Jul 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,486
0
17 Feb 2016
Distributed Optimization with Arbitrary Local Solvers
Distributed Optimization with Arbitrary Local Solvers
Chenxin Ma
Jakub Konecný
Martin Jaggi
Virginia Smith
Michael I. Jordan
Peter Richtárik
Martin Takáč
93
197
0
13 Dec 2015
Federated Optimization:Distributed Optimization Beyond the Datacenter
Federated Optimization:Distributed Optimization Beyond the Datacenter
Jakub Konecný
H. B. McMahan
Daniel Ramage
FedML
120
737
0
11 Nov 2015
Communication Efficient Distributed Optimization using an Approximate
  Newton-type Method
Communication Efficient Distributed Optimization using an Approximate Newton-type Method
Ohad Shamir
Nathan Srebro
Tong Zhang
95
555
0
30 Dec 2013
Differentially Private Empirical Risk Minimization
Differentially Private Empirical Risk Minimization
Kamalika Chaudhuri
C. Monteleoni
Anand D. Sarwate
137
1,490
0
01 Dec 2009
1