ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.10071
  4. Cited By
Improving singing voice separation with the Wave-U-Net using Minimum
  Hyperspherical Energy

Improving singing voice separation with the Wave-U-Net using Minimum Hyperspherical Energy

22 October 2019
Joaquin Perez-Lapillo
Oleksandr Galkin
Tillman Weyde
ArXivPDFHTML

Papers citing "Improving singing voice separation with the Wave-U-Net using Minimum Hyperspherical Energy"

3 / 3 papers shown
Title
Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source
  Separation
Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source Separation
Daniel Stoller
Sebastian Ewert
S. Dixon
AI4TS
128
595
0
08 Jun 2018
Diversity-Promoting Bayesian Learning of Latent Variable Models
Diversity-Promoting Bayesian Learning of Latent Variable Models
P. Xie
Jun Zhu
Eric Xing
52
33
0
23 Nov 2017
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
253
8,832
0
01 Oct 2015
1