Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.09933
Cited By
Abnormal Client Behavior Detection in Federated Learning
22 October 2019
Suyi Li
Yong Cheng
Yang Liu
Wei Wang
Tianjian Chen
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Abnormal Client Behavior Detection in Federated Learning"
21 / 21 papers shown
Title
Using Anomaly Detection to Detect Poisoning Attacks in Federated Learning Applications
Ali Raza
Shujun Li
K. Tran
L. Koehl
Kim Duc Tran
AAML
85
4
0
18 Jul 2022
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
138
2,333
0
04 Jul 2019
Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms
Xiangyi Chen
Tiancong Chen
Haoran Sun
Zhiwei Steven Wu
Mingyi Hong
FedML
44
74
0
04 Jun 2019
Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
Jiawen Kang
Zehui Xiong
Dusit Niyato
Han Yu
Ying-Chang Liang
Dong In Kim
FedML
49
215
0
16 May 2019
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
121
2,660
0
04 Feb 2019
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
173
5,168
0
14 Dec 2018
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
134
1,419
0
03 Dec 2018
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
276
1,054
0
29 Nov 2018
RSA: Byzantine-Robust Stochastic Aggregation Methods for Distributed Learning from Heterogeneous Datasets
Liping Li
Canran Xu
Xiangnan He
Yixin Cao
Tat-Seng Chua
FedML
109
593
0
09 Nov 2018
Multi-Institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation
Micah J. Sheller
G. A. Reina
Brandon Edwards
Jason Martin
Spyridon Bakas
FedML
61
465
0
10 Oct 2018
Sparsified SGD with Memory
Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
71
749
0
20 Sep 2018
Privacy-Preserving Deep Learning via Weight Transmission
L. T. Phong
T. Phuong
FedML
53
87
0
10 Sep 2018
Parallel Restarted SGD with Faster Convergence and Less Communication: Demystifying Why Model Averaging Works for Deep Learning
Hao Yu
Sen Yang
Shenghuo Zhu
MoMe
FedML
73
605
0
17 Jul 2018
How To Backdoor Federated Learning
Eugene Bagdasaryan
Andreas Veit
Yiqing Hua
D. Estrin
Vitaly Shmatikov
SILM
FedML
94
1,913
0
02 Jul 2018
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
OOD
FedML
113
1,498
0
05 Mar 2018
Differentially Private Federated Learning: A Client Level Perspective
Robin C. Geyer
T. Klein
Moin Nabi
FedML
116
1,294
0
20 Dec 2017
Federated Multi-Task Learning
Virginia Smith
Chao-Kai Chiang
Maziar Sanjabi
Ameet Talwalkar
FedML
148
1,807
0
30 May 2017
Practical Secure Aggregation for Federated Learning on User-Held Data
Keith Bonawitz
Vladimir Ivanov
Ben Kreuter
Antonio Marcedone
H. B. McMahan
Sarvar Patel
Daniel Ramage
Aaron Segal
Karn Seth
FedML
71
501
0
14 Nov 2016
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
293
4,642
0
18 Oct 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
191
6,109
0
01 Jul 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
380
17,437
0
17 Feb 2016
1