ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.08918
22
48

Neuro-SERKET: Development of Integrative Cognitive System through the Composition of Deep Probabilistic Generative Models

20 October 2019
T. Taniguchi
Tomoaki Nakamura
Masahiro Suzuki
Ryo Kuniyasu
Kaede Hayashi
Akira Taniguchi
Takato Horii
Takayuki Nagai
    BDL
    DRL
ArXivPDFHTML
Abstract

This paper describes a framework for the development of an integrative cognitive system based on probabilistic generative models (PGMs) called Neuro-SERKET. Neuro-SERKET is an extension of SERKET, which can compose elemental PGMs developed in a distributed manner and provide a scheme that allows the composed PGMs to learn throughout the system in an unsupervised way. In addition to the head-to-tail connection supported by SERKET, Neuro-SERKET supports tail-to-tail and head-to-head connections, as well as neural network-based modules, i.e., deep generative models. As an example of a Neuro-SERKET application, an integrative model was developed by composing a variational autoencoder (VAE), a Gaussian mixture model (GMM), latent Dirichlet allocation (LDA), and automatic speech recognition (ASR). The model is called VAE+GMM+LDA+ASR. The performance of VAE+GMM+LDA+ASR and the validity of Neuro-SERKET were demonstrated through a multimodal categorization task using image data and a speech signal of numerical digits.

View on arXiv
Comments on this paper