ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.08737
  4. Cited By
Utilising Low Complexity CNNs to Lift Non-Local Redundancies in Video
  Coding

Utilising Low Complexity CNNs to Lift Non-Local Redundancies in Video Coding

19 October 2019
Jan P. Klopp
Liang-Gee Chen
Shao-Yi Chien
ArXivPDFHTML

Papers citing "Utilising Low Complexity CNNs to Lift Non-Local Redundancies in Video Coding"

6 / 6 papers shown
Title
Reducing The Amortization Gap of Entropy Bottleneck In End-to-End Image
  Compression
Reducing The Amortization Gap of Entropy Bottleneck In End-to-End Image Compression
M. Balcilar
B. Damodaran
Pierre Hellier
21
8
0
02 Sep 2022
Instance-Adaptive Video Compression: Improving Neural Codecs by Training
  on the Test Set
Instance-Adaptive Video Compression: Improving Neural Codecs by Training on the Test Set
T. V. Rozendaal
Johann Brehmer
Yunfan Zhang
Reza Pourreza
Auke Wiggers
Taco S. Cohen
39
24
0
19 Nov 2021
FVC: A New Framework towards Deep Video Compression in Feature Space
FVC: A New Framework towards Deep Video Compression in Feature Space
Zhihao Hu
Guo Lu
Dong Xu
28
246
0
20 May 2021
Overfitting for Fun and Profit: Instance-Adaptive Data Compression
Overfitting for Fun and Profit: Instance-Adaptive Data Compression
T. V. Rozendaal
Iris A. M. Huijben
Taco S. Cohen
25
47
0
21 Jan 2021
How to Exploit the Transferability of Learned Image Compression to
  Conventional Codecs
How to Exploit the Transferability of Learned Image Compression to Conventional Codecs
Jan P. Klopp
Keng-Chi Liu
Liang-Gee Chen
Shao-Yi Chien
16
15
0
03 Dec 2020
A QP-adaptive Mechanism for CNN-based Filter in Video Coding
A QP-adaptive Mechanism for CNN-based Filter in Video Coding
Chao Liu
Heming Sun
J. Katto
Xiaoyang Zeng
Yibo Fan
MQ
22
5
0
25 Oct 2020
1