ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.08527
  4. Cited By
Masked Gradient-Based Causal Structure Learning

Masked Gradient-Based Causal Structure Learning

18 October 2019
Ignavier Ng
Shengyu Zhu
Zhuangyan Fang
Haoyang Li
Zhitang Chen
Jun Wang
    CML
ArXivPDFHTML

Papers citing "Masked Gradient-Based Causal Structure Learning"

24 / 24 papers shown
Title
LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data
LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data
Yue Cheng
Jiajun Zhang
Weiwei Xing
Xiaoyu Guo
Yue Cheng
Witold Pedrycz
CML
32
0
0
25 Oct 2024
Towards Generalizable Reinforcement Learning via Causality-Guided Self-Adaptive Representations
Yupei Yang
Biwei Huang
Fan Feng
Xinyue Wang
Shikui Tu
Lei Xu
CML
OOD
TTA
36
1
0
30 Jul 2024
Causal Structure Representation Learning of Confounders in Latent Space for Recommendation
Causal Structure Representation Learning of Confounders in Latent Space for Recommendation
Hangtong Xu
Yuanbo Xu
Yongjian Yang
Fuzhen Zhuang
CML
71
0
0
02 Nov 2023
Recovering Linear Causal Models with Latent Variables via Cholesky
  Factorization of Covariance Matrix
Recovering Linear Causal Models with Latent Variables via Cholesky Factorization of Covariance Matrix
Yunfeng Cai
Xu Li
Ming Sun
Ping Li
CML
21
1
0
01 Nov 2023
Open problems in causal structure learning: A case study of COVID-19 in
  the UK
Open problems in causal structure learning: A case study of COVID-19 in the UK
Anthony C. Constantinou
N. K. Kitson
Yang Liu
Kiattikun Chobtham
Arian Hashemzadeh
Praharsh Nanavati
R. Mbuvha
Bruno Petrungaro
CML
26
9
0
05 May 2023
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CML
AI4TS
31
24
0
27 Mar 2023
MetaPhysiCa: OOD Robustness in Physics-informed Machine Learning
MetaPhysiCa: OOD Robustness in Physics-informed Machine Learning
S Chandra Mouli
M. A. Alam
Bruno Ribeiro
OOD
23
4
0
06 Mar 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Biwei Huang
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
50
11
0
29 Jan 2023
Towards Privacy-Aware Causal Structure Learning in Federated Setting
Towards Privacy-Aware Causal Structure Learning in Federated Setting
Jianli Huang
Xianjie Guo
Kui Yu
Fuyuan Cao
Jiye Liang
FedML
29
9
0
13 Nov 2022
Causal Structural Hypothesis Testing and Data Generation Models
Causal Structural Hypothesis Testing and Data Generation Models
Jeffrey Q. Jiang
Omead Brandon Pooladzandi
Sunay Bhat
Gregory Pottie
CML
29
1
0
20 Oct 2022
Truncated Matrix Power Iteration for Differentiable DAG Learning
Truncated Matrix Power Iteration for Differentiable DAG Learning
Zhen Zhang
Ignavier Ng
Dong Gong
Yuhang Liu
Ehsan Abbasnejad
Mingming Gong
Kun Zhang
Javen Qinfeng Shi
27
25
0
30 Aug 2022
CIPCaD-Bench: Continuous Industrial Process datasets for benchmarking
  Causal Discovery methods
CIPCaD-Bench: Continuous Industrial Process datasets for benchmarking Causal Discovery methods
Giovanni Menegozzo
Diego DallÁlba
Paolo Fiorini
17
7
0
02 Aug 2022
De-Biasing Generative Models using Counterfactual Methods
De-Biasing Generative Models using Counterfactual Methods
Sunay Bhat
Jeffrey Q. Jiang
Omead Brandon Pooladzandi
Gregory Pottie
CML
21
7
0
04 Jul 2022
Large-Scale Differentiable Causal Discovery of Factor Graphs
Large-Scale Differentiable Causal Discovery of Factor Graphs
Romain Lopez
Jan-Christian Hütter
J. Pritchard
Aviv Regev
CML
AI4CE
45
40
0
15 Jun 2022
Differentiable Causal Discovery Under Latent Interventions
Differentiable Causal Discovery Under Latent Interventions
Gonccalo R. A. Faria
André F. T. Martins
Mário A. T. Figueiredo
BDL
CML
OOD
40
23
0
04 Mar 2022
gCastle: A Python Toolbox for Causal Discovery
gCastle: A Python Toolbox for Causal Discovery
Keli Zhang
Shengyu Zhu
Marcus Kalander
Ignavier Ng
Junjian Ye
Zhitang Chen
Lujia Pan
CML
24
60
0
30 Nov 2021
Towards Federated Bayesian Network Structure Learning with Continuous
  Optimization
Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ignavier Ng
Kun Zhang
FedML
42
38
0
18 Oct 2021
DAGs with No Curl: An Efficient DAG Structure Learning Approach
DAGs with No Curl: An Efficient DAG Structure Learning Approach
Yue Yu
Tian Gao
Naiyu Yin
Q. Ji
CML
22
59
0
14 Jun 2021
Ordering-Based Causal Discovery with Reinforcement Learning
Ordering-Based Causal Discovery with Reinforcement Learning
Xiaoqiang Wang
Yali Du
Shengyu Zhu
Liangjun Ke
Zhitang Chen
Jianye Hao
Jun Wang
CML
26
63
0
14 May 2021
Unsuitability of NOTEARS for Causal Graph Discovery
Unsuitability of NOTEARS for Causal Graph Discovery
Marcus Kaiser
Maksim Sipos
CML
27
65
0
12 Apr 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
37
296
0
03 Mar 2021
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
28
44
0
18 Apr 2020
Learning Sparse Nonparametric DAGs
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
CML
111
258
0
29 Sep 2019
Causal Inference and Causal Explanation with Background Knowledge
Causal Inference and Causal Explanation with Background Knowledge
Christopher Meek
CML
221
626
0
20 Feb 2013
1