ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.08485
  4. Cited By
Understanding Deep Networks via Extremal Perturbations and Smooth Masks

Understanding Deep Networks via Extremal Perturbations and Smooth Masks

18 October 2019
Ruth C. Fong
Mandela Patrick
Andrea Vedaldi
    AAML
ArXiv (abs)PDFHTML

Papers citing "Understanding Deep Networks via Extremal Perturbations and Smooth Masks"

35 / 35 papers shown
Title
Soft-CAM: Making black box models self-explainable for high-stakes decisions
K. Djoumessi
Philipp Berens
FAttBDL
229
0
0
23 May 2025
Model Lakes
Model Lakes
Koyena Pal
David Bau
Renée J. Miller
155
2
0
24 Feb 2025
Generating visual explanations from deep networks using implicit neural representations
Generating visual explanations from deep networks using implicit neural representations
Michal Byra
Henrik Skibbe
GANFAtt
99
0
0
20 Jan 2025
Interpreting Low-level Vision Models with Causal Effect Maps
Interpreting Low-level Vision Models with Causal Effect Maps
Jinfan Hu
Jinjin Gu
Shiyao Yu
Fanghua Yu
Zheyuan Li
Zhiyuan You
Chaochao Lu
Chao Dong
CML
189
3
0
29 Jul 2024
Multiple Different Black Box Explanations for Image Classifiers
Multiple Different Black Box Explanations for Image Classifiers
Hana Chockler
D. A. Kelly
Daniel Kroening
FAtt
79
0
0
25 Sep 2023
Interpretability-Aware Vision Transformer
Interpretability-Aware Vision Transformer
Yao Qiang
Chengyin Li
Prashant Khanduri
D. Zhu
ViT
237
8
0
14 Sep 2023
VISTANet: VIsual Spoken Textual Additive Net for Interpretable Multimodal Emotion Recognition
VISTANet: VIsual Spoken Textual Additive Net for Interpretable Multimodal Emotion Recognition
Puneet Kumar
Sarthak Malik
Balasubramanian Raman
Xiaobai Li
123
2
0
24 Aug 2022
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
114
83
0
17 Mar 2020
Sanity Checks for Saliency Maps
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAttAAMLXAI
150
1,970
0
08 Oct 2018
RISE: Randomized Input Sampling for Explanation of Black-box Models
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
181
1,176
0
19 Jun 2018
Revisiting the Importance of Individual Units in CNNs via Ablation
Revisiting the Importance of Individual Units in CNNs via Ablation
Bolei Zhou
Yiyou Sun
David Bau
Antonio Torralba
FAtt
111
117
0
07 Jun 2018
Constrained-CNN losses for weakly supervised segmentation
Constrained-CNN losses for weakly supervised segmentation
H. Kervadec
Jose Dolz
Meng Tang
Eric Granger
Yuri Boykov
Ismail Ben Ayed
76
240
0
12 May 2018
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters
  in Deep Neural Networks
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks
Ruth C. Fong
Andrea Vedaldi
FAtt
80
264
0
10 Jan 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with
  Concept Activation Vectors (TCAV)
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
232
1,850
0
30 Nov 2017
Deep Image Prior
Deep Image Prior
Dmitry Ulyanov
Andrea Vedaldi
Victor Lempitsky
SupR
130
3,166
0
29 Nov 2017
SmoothGrad: removing noise by adding noise
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAttODL
207
2,235
0
12 Jun 2017
Real Time Image Saliency for Black Box Classifiers
Real Time Image Saliency for Black Box Classifiers
P. Dabkowski
Y. Gal
70
593
0
22 May 2017
Network Dissection: Quantifying Interpretability of Deep Visual
  Representations
Network Dissection: Quantifying Interpretability of Deep Visual Representations
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
MILMFAtt
158
1,523
1
19 Apr 2017
Hide-and-Seek: Forcing a Network to be Meticulous for Weakly-supervised
  Object and Action Localization
Hide-and-Seek: Forcing a Network to be Meticulous for Weakly-supervised Object and Action Localization
Krishna Kumar Singh
Yong Jae Lee
93
682
0
13 Apr 2017
A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection
A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection
Xinyu Wang
Abhinav Shrivastava
Abhinav Gupta
ObjD
97
572
0
11 Apr 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAttAAML
76
1,525
0
11 Apr 2017
Object Region Mining with Adversarial Erasing: A Simple Classification
  to Semantic Segmentation Approach
Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach
Yunchao Wei
Jiashi Feng
Xiaodan Liang
Ming-Ming Cheng
Yao-Min Zhao
Shuicheng Yan
90
811
0
24 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
325
20,110
0
07 Oct 2016
Top-down Neural Attention by Excitation Backprop
Top-down Neural Attention by Excitation Backprop
Jianming Zhang
Zhe Lin
Jonathan Brandt
Xiaohui Shen
Stan Sclaroff
92
948
0
01 Aug 2016
The Latin American Giant Observatory: a successful collaboration in
  Latin America based on Cosmic Rays and computer science domains
The Latin American Giant Observatory: a successful collaboration in Latin America based on Cosmic Rays and computer science domains
Hernán Asorey
R. Mayo-García
L. Núñez
M. Pascual
A. J. Rubio-Montero
M. Suárez-Durán
L. A. Torres-Niño
91
5
0
30 May 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,033
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSLSSegFAtt
253
9,338
0
14 Dec 2015
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
Aravindh Mahendran
Andrea Vedaldi
FAtt
74
536
0
07 Dec 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
367
19,733
0
09 Mar 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
254
4,681
0
21 Dec 2014
Understanding Deep Image Representations by Inverting Them
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
131
1,967
0
26 Nov 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
494
43,698
0
17 Sep 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
434
43,832
0
01 May 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
314
7,317
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
595
15,904
0
12 Nov 2013
1