Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.07969
Cited By
v1
v2
v3
v4
v5
v6 (latest)
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
17 October 2019
Chih-Kuan Yeh
Been Kim
Sercan O. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
Re-assign community
ArXiv (abs)
PDF
HTML
Github (53★)
Papers citing
"On Completeness-aware Concept-Based Explanations in Deep Neural Networks"
41 / 41 papers shown
Title
Autoencoding Random Forests
Binh Duc Vu
Jan Kapar
Marvin N. Wright
David S. Watson
143
0
0
27 May 2025
If Concept Bottlenecks are the Question, are Foundation Models the Answer?
Nicola Debole
Pietro Barbiero
Francesco Giannini
Andrea Passerini
Stefano Teso
Emanuele Marconato
499
1
0
28 Apr 2025
Leakage and Interpretability in Concept-Based Models
Enrico Parisini
Tapabrata Chakraborti
Chris Harbron
Ben D. MacArthur
Christopher R. S. Banerji
100
1
0
18 Apr 2025
Measuring Leakage in Concept-Based Methods: An Information Theoretic Approach
Mikael Makonnen
Moritz Vandenhirtz
Sonia Laguna
Julia E. Vogt
75
3
0
13 Apr 2025
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Numair Sani
Daniel Malinsky
I. Shpitser
CML
136
16
0
10 Jan 2025
Explaining the Impact of Training on Vision Models via Activation Clustering
Ahcène Boubekki
Samuel G. Fadel
Sebastian Mair
232
0
0
29 Nov 2024
Unlearning-based Neural Interpretations
Ching Lam Choi
Alexandre Duplessis
Serge Belongie
FAtt
235
0
0
10 Oct 2024
3VL: Using Trees to Improve Vision-Language Models' Interpretability
Nir Yellinek
Leonid Karlinsky
Raja Giryes
CoGe
VLM
260
3
0
28 Dec 2023
Concept Bottleneck Models
Pang Wei Koh
Thao Nguyen
Y. S. Tang
Stephen Mussmann
Emma Pierson
Been Kim
Percy Liang
99
833
0
09 Jul 2020
FACE: Feasible and Actionable Counterfactual Explanations
Rafael Poyiadzi
Kacper Sokol
Raúl Santos-Rodríguez
T. D. Bie
Peter A. Flach
75
369
0
20 Sep 2019
Benchmarking Attribution Methods with Relative Feature Importance
Mengjiao Yang
Been Kim
FAtt
XAI
69
142
0
23 Jul 2019
Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems
Shalmali Joshi
Oluwasanmi Koyejo
Warut D. Vijitbenjaronk
Been Kim
Joydeep Ghosh
FaML
69
188
0
22 Jul 2019
Explaining Classifiers with Causal Concept Effect (CaCE)
Yash Goyal
Amir Feder
Uri Shalit
Been Kim
CML
83
178
0
16 Jul 2019
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning
Fan Yang
Mengnan Du
Xia Hu
XAI
ELM
57
67
0
16 Jul 2019
EDUCE: Explaining model Decisions through Unsupervised Concepts Extraction
Diane Bouchacourt
Ludovic Denoyer
FAtt
56
21
0
28 May 2019
Counterfactual Visual Explanations
Yash Goyal
Ziyan Wu
Jan Ernst
Dhruv Batra
Devi Parikh
Stefan Lee
CML
80
512
0
16 Apr 2019
ProtoAttend: Attention-Based Prototypical Learning
Sercan O. Arik
Tomas Pfister
57
19
0
17 Feb 2019
On the (In)fidelity and Sensitivity for Explanations
Chih-Kuan Yeh
Cheng-Yu Hsieh
A. Suggala
David I. Inouye
Pradeep Ravikumar
FAtt
78
454
0
27 Jan 2019
Unsupervised speech representation learning using WaveNet autoencoders
J. Chorowski
Ron J. Weiss
Samy Bengio
Aaron van den Oord
SSL
72
319
0
25 Jan 2019
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
131
1,471
0
29 Nov 2018
Representer Point Selection for Explaining Deep Neural Networks
Chih-Kuan Yeh
Joon Sik Kim
Ian En-Hsu Yen
Pradeep Ravikumar
TDI
79
253
0
23 Nov 2018
Interpreting Black Box Predictions using Fisher Kernels
Rajiv Khanna
Been Kim
Joydeep Ghosh
Oluwasanmi Koyejo
FAtt
83
104
0
23 Oct 2018
L-Shapley and C-Shapley: Efficient Model Interpretation for Structured Data
Jianbo Chen
Le Song
Martin J. Wainwright
Michael I. Jordan
FAtt
TDI
115
216
0
08 Aug 2018
Grounding Visual Explanations
Lisa Anne Hendricks
Ronghang Hu
Trevor Darrell
Zeynep Akata
FAtt
56
229
0
25 Jul 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
246
1,188
0
27 Jun 2018
Contrastive Explanations with Local Foil Trees
J. V. D. Waa
M. Robeer
J. Diggelen
Matthieu J. S. Brinkhuis
Mark Antonius Neerincx
FAtt
64
82
0
19 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
97
1,862
0
31 May 2018
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
124
591
0
21 Feb 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
140
3,970
0
06 Feb 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
227
1,850
0
30 Nov 2017
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
127
2,361
0
01 Nov 2017
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
207
2,235
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,018
0
22 May 2017
Learning to Generate Reviews and Discovering Sentiment
Alec Radford
Rafal Jozefowicz
Ilya Sutskever
99
510
0
05 Apr 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
216
2,905
0
14 Mar 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
17,033
0
16 Feb 2016
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
886
27,416
0
02 Dec 2015
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
139
1,199
0
21 Sep 2015
PCANet: A Simple Deep Learning Baseline for Image Classification?
Tsung-Han Chan
Kui Jia
Shenghua Gao
Jiwen Lu
Zinan Zeng
Yi-An Ma
120
1,501
0
14 Apr 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
Supervised Topic Models
David M. Blei
Jon D. McAuliffe
BDL
124
1,788
0
03 Mar 2010
1