ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.07629
  4. Cited By
A New Defense Against Adversarial Images: Turning a Weakness into a
  Strength

A New Defense Against Adversarial Images: Turning a Weakness into a Strength

16 October 2019
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
    AAML
ArXivPDFHTML

Papers citing "A New Defense Against Adversarial Images: Turning a Weakness into a Strength"

16 / 16 papers shown
Title
The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective
The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective
Nils Philipp Walter
Linara Adilova
Jilles Vreeken
Michael Kamp
AAML
48
2
0
27 May 2024
Assessing Privacy Risks in Language Models: A Case Study on
  Summarization Tasks
Assessing Privacy Risks in Language Models: A Case Study on Summarization Tasks
Ruixiang Tang
Gord Lueck
Rodolfo Quispe
Huseyin A. Inan
Janardhan Kulkarni
Xia Hu
23
6
0
20 Oct 2023
Probing the Purview of Neural Networks via Gradient Analysis
Probing the Purview of Neural Networks via Gradient Analysis
Jinsol Lee
Charles Lehman
M. Prabhushankar
Ghassan AlRegib
29
7
0
06 Apr 2023
DNNShield: Dynamic Randomized Model Sparsification, A Defense Against
  Adversarial Machine Learning
DNNShield: Dynamic Randomized Model Sparsification, A Defense Against Adversarial Machine Learning
Mohammad Hossein Samavatian
Saikat Majumdar
Kristin Barber
R. Teodorescu
AAML
14
2
0
31 Jul 2022
Transferable Adversarial Attack based on Integrated Gradients
Transferable Adversarial Attack based on Integrated Gradients
Y. Huang
A. Kong
AAML
35
50
0
26 May 2022
ML-based IoT Malware Detection Under Adversarial Settings: A Systematic
  Evaluation
ML-based IoT Malware Detection Under Adversarial Settings: A Systematic Evaluation
Ahmed A. Abusnaina
Afsah Anwar
Sultan Alshamrani
Abdulrahman Alabduljabbar
Rhongho Jang
Daehun Nyang
David A. Mohaisen
AAML
20
1
0
30 Aug 2021
Advances in adversarial attacks and defenses in computer vision: A
  survey
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Florian Tramèr
AAML
27
64
0
24 Jul 2021
BAARD: Blocking Adversarial Examples by Testing for Applicability,
  Reliability and Decidability
BAARD: Blocking Adversarial Examples by Testing for Applicability, Reliability and Decidability
Luke Chang
Katharina Dost
Kaiqi Zhao
Ambra Demontis
Fabio Roli
Gillian Dobbie
Jörg Simon Wicker
AAML
19
2
0
02 May 2021
Adversarial Training Makes Weight Loss Landscape Sharper in Logistic
  Regression
Adversarial Training Makes Weight Loss Landscape Sharper in Logistic Regression
Masanori Yamada
Sekitoshi Kanai
Tomoharu Iwata
Tomokatsu Takahashi
Yuki Yamanaka
Hiroshi Takahashi
Atsutoshi Kumagai
AAML
8
9
0
05 Feb 2021
D-square-B: Deep Distribution Bound for Natural-looking Adversarial
  Attack
D-square-B: Deep Distribution Bound for Natural-looking Adversarial Attack
Qiuling Xu
Guanhong Tao
Xiangyu Zhang
AAML
17
2
0
12 Jun 2020
On Adaptive Attacks to Adversarial Example Defenses
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
A. Madry
AAML
83
820
0
19 Feb 2020
Understanding the Decision Boundary of Deep Neural Networks: An
  Empirical Study
Understanding the Decision Boundary of Deep Neural Networks: An Empirical Study
David Mickisch
F. Assion
Florens Greßner
W. Günther
M. Motta
AAML
19
34
0
05 Feb 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
329
11,681
0
09 Mar 2017
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1