Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.07561
Cited By
A Double Residual Compression Algorithm for Efficient Distributed Learning
16 October 2019
Xiaorui Liu
Yao Li
Jiliang Tang
Ming Yan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Double Residual Compression Algorithm for Efficient Distributed Learning"
14 / 14 papers shown
Title
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
Laurent Condat
A. Maranjyan
Peter Richtárik
49
4
0
07 Mar 2024
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
34
6
0
08 Mar 2023
DoCoFL: Downlink Compression for Cross-Device Federated Learning
Ron Dorfman
S. Vargaftik
Y. Ben-Itzhak
Kfir Y. Levy
FedML
34
19
0
01 Feb 2023
Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
Xiaoyun Li
Ping Li
FedML
36
4
0
25 Nov 2022
Downlink Compression Improves TopK Sparsification
William Zou
H. Sterck
Jun Liu
21
0
0
30 Sep 2022
ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction
Keshav Santhanam
Omar Khattab
Jon Saad-Falcon
Christopher Potts
Matei A. Zaharia
39
385
0
02 Dec 2021
Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning
Xun Qian
Rustem Islamov
M. Safaryan
Peter Richtárik
FedML
24
23
0
02 Nov 2021
Leveraging Spatial and Temporal Correlations in Sparsified Mean Estimation
Divyansh Jhunjhunwala
Ankur Mallick
Advait Gadhikar
S. Kadhe
Gauri Joshi
24
10
0
14 Oct 2021
ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training
Hui-Po Wang
Sebastian U. Stich
Yang He
Mario Fritz
FedML
AI4CE
36
46
0
11 Oct 2021
Decentralized Composite Optimization with Compression
Yao Li
Xiaorui Liu
Jiliang Tang
Ming Yan
Kun Yuan
27
9
0
10 Aug 2021
ErrorCompensatedX: error compensation for variance reduced algorithms
Hanlin Tang
Yao Li
Ji Liu
Ming Yan
32
10
0
04 Aug 2021
Communication-Efficient Federated Learning via Predictive Coding
Kai Yue
Richeng Jin
Chau-Wai Wong
H. Dai
FedML
25
14
0
02 Aug 2021
FedNL: Making Newton-Type Methods Applicable to Federated Learning
M. Safaryan
Rustem Islamov
Xun Qian
Peter Richtárik
FedML
33
78
0
05 Jun 2021
Federated Learning via Synthetic Data
Jack Goetz
Ambuj Tewari
FedML
DD
27
71
0
11 Aug 2020
1