Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.06948
Cited By
Data-Driven Deep Learning of Partial Differential Equations in Modal Space
15 October 2019
Kailiang Wu
D. Xiu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data-Driven Deep Learning of Partial Differential Equations in Modal Space"
50 / 53 papers shown
Title
DUE: A Deep Learning Framework and Library for Modeling Unknown Equations
Junfeng Chen
Kailiang Wu
D. Xiu
29
0
0
14 Apr 2025
Is the neural tangent kernel of PINNs deep learning general partial differential equations always convergent ?
Zijian Zhou
Zhenya Yan
108
10
0
09 Dec 2024
Data-driven Effective Modeling of Multiscale Stochastic Dynamical Systems
Yuán Chen
Dongbin Xiu
34
0
0
27 Aug 2024
Operator Learning Using Random Features: A Tool for Scientific Computing
Nicholas H. Nelsen
Andrew M. Stuart
45
12
0
12 Aug 2024
Physics-Constrained Learning for PDE Systems with Uncertainty Quantified Port-Hamiltonian Models
Kaiyuan Tan
Peilun Li
Thomas Beckers
AI4CE
26
3
0
17 Jun 2024
Positional Knowledge is All You Need: Position-induced Transformer (PiT) for Operator Learning
Junfeng Chen
Kailiang Wu
42
3
0
15 May 2024
High Energy Density Radiative Transfer in the Diffusion Regime with Fourier Neural Operators
Joseph Farmer
Ethan Smith
William Bennett
Ryan McClarren
19
1
0
07 May 2024
Adaptive deep density approximation for stochastic dynamical systems
Junjie He
Qifeng Liao
Xiaoliang Wan
27
2
0
05 May 2024
tLaSDI: Thermodynamics-informed latent space dynamics identification
Jun Sur Richard Park
Siu Wun Cheung
Youngsoo Choi
Yeonjong Shin
AI4CE
32
4
0
09 Mar 2024
Dynamic Gaussian Graph Operator: Learning parametric partial differential equations in arbitrary discrete mechanics problems
Chu Wang
Jinhong Wu
Yanzhi Wang
Zhijian Zha
Qi Zhou
AI4CE
30
0
0
05 Mar 2024
Discussing the Spectrum of Physics-Enhanced Machine Learning; a Survey on Structural Mechanics Applications
M. Haywood-Alexander
Wei Liu
Kiran Bacsa
Zhilu Lai
Eleni Chatzi
AI4CE
22
9
0
31 Oct 2023
Fourier neural operator for real-time simulation of 3D dynamic urban microclimate
W. Peng
Shaoxiang Qin
Senwen Yang
Jianchun Wang
Xue Liu
Lei Wang
AI4CE
23
30
0
08 Aug 2023
Learning Nonautonomous Systems via Dynamic Mode Decomposition
Hannah Lu
D. Tartakovsky
AI4CE
14
1
0
27 Jun 2023
Energy-Dissipative Evolutionary Deep Operator Neural Networks
Jiahao Zhang
Shiheng Zhang
Jie Shen
Guang Lin
21
10
0
09 Jun 2023
Learning Stochastic Dynamical System via Flow Map Operator
Yuán Chen
D. Xiu
AI4CE
27
15
0
05 May 2023
A Survey on Solving and Discovering Differential Equations Using Deep Neural Networks
Hyeonjung Jung
Jung
Jayant Gupta
B. Jayaprakash
Matthew J. Eagon
Harish Selvam
Carl Molnar
W. Northrop
Shashi Shekhar
AI4CE
37
5
0
26 Apr 2023
Critical Sampling for Robust Evolution Operator Learning of Unknown Dynamical Systems
Ce Zhang
Kailiang Wu
Zhihai He
35
0
0
15 Apr 2023
Physics informed WNO
N. N.
Tapas Tripura
S. Chakraborty
33
28
0
12 Feb 2023
Discovering interpretable Lagrangian of dynamical systems from data
Tapas Tripura
S. Chakraborty
27
4
0
09 Feb 2023
Deep-OSG: Deep Learning of Operators in Semigroup
Junfeng Chen
Kailiang Wu
AI4TS
23
6
0
07 Feb 2023
WeakIdent: Weak formulation for Identifying Differential Equations using Narrow-fit and Trimming
Mengyi Tang
Wenjing Liao
R. Kuske
S. Kang
17
16
0
06 Nov 2022
A Method for Computing Inverse Parametric PDE Problems with Random-Weight Neural Networks
S. Dong
Yiran Wang
29
20
0
09 Oct 2022
A variational neural network approach for glacier modelling with nonlinear rheology
Tiangang Cui
Zhongjian Wang
Zhiwen Zhang
32
4
0
05 Sep 2022
Data-driven synchronization-avoiding algorithms in the explicit distributed structural analysis of soft tissue
G. Tong
Daniele E. Schiavazzi
35
3
0
05 Jul 2022
Learning Fine Scale Dynamics from Coarse Observations via Inner Recurrence
V. Churchill
D. Xiu
AI4CE
24
2
0
03 Jun 2022
Learning black- and gray-box chemotactic PDEs/closures from agent based Monte Carlo simulation data
Seungjoon Lee
Y. M. Psarellis
Constantinos Siettos
Ioannis G. Kevrekidis
AI4CE
21
27
0
26 May 2022
Deep Learning of Chaotic Systems from Partially-Observed Data
V. Churchill
D. Xiu
40
12
0
12 May 2022
Wavelet neural operator: a neural operator for parametric partial differential equations
Tapas Tripura
S. Chakraborty
25
63
0
04 May 2022
Online Weak-form Sparse Identification of Partial Differential Equations
Daniel Messenger
E. Dall’Anese
David M. Bortz
43
13
0
08 Mar 2022
Robust Modeling of Unknown Dynamical Systems via Ensemble Averaged Learning
V. Churchill
Steve Manns
Zhen Chen
D. Xiu
AI4CE
29
9
0
07 Mar 2022
Modeling unknown dynamical systems with hidden parameters
Xiaohan Fu
Weize Mao
L. Chang
D. Xiu
24
5
0
03 Feb 2022
DeepParticle: learning invariant measure by a deep neural network minimizing Wasserstein distance on data generated from an interacting particle method
Zhongjian Wang
Jack Xin
Zhiwen Zhang
39
15
0
02 Nov 2021
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
52
441
0
19 Aug 2021
Cell-average based neural network method for hyperbolic and parabolic partial differential equations
Changxin Qiu
Jue Yan
16
10
0
02 Jul 2021
Deep Neural Network Modeling of Unknown Partial Differential Equations in Nodal Space
Zhen Chen
V. Churchill
Kailiang Wu
D. Xiu
AI4CE
14
47
0
07 Jun 2021
Robust discovery of partial differential equations in complex situations
Hao Xu
Dongxiao Zhang
AI4CE
25
28
0
31 May 2021
Mosaic Flows: A Transferable Deep Learning Framework for Solving PDEs on Unseen Domains
Hengjie Wang
R. Planas
Aparna Chandramowlishwaran
Ramin Bostanabad
AI4CE
50
61
0
22 Apr 2021
The Discovery of Dynamics via Linear Multistep Methods and Deep Learning: Error Estimation
Q. Du
Yiqi Gu
Haizhao Yang
Chao Zhou
26
20
0
21 Mar 2021
A physics-informed operator regression framework for extracting data-driven continuum models
Ravi G. Patel
N. Trask
M. Wood
E. Cyr
AI4CE
13
103
0
25 Sep 2020
An unsupervised learning approach to solving heat equations on chip based on Auto Encoder and Image Gradient
Haiyang He
Jay Pathak
22
24
0
19 Jul 2020
Weak SINDy For Partial Differential Equations
Daniel Messenger
David M. Bortz
23
169
0
06 Jul 2020
GINNs: Graph-Informed Neural Networks for Multiscale Physics
E. Hall
S. Taverniers
Markos A. Katsoulakis
D. Tartakovsky
PINN
AI4CE
12
30
0
26 Jun 2020
Deep learning of free boundary and Stefan problems
Sizhuang He
P. Perdikaris
27
80
0
04 Jun 2020
Data-driven learning of non-autonomous systems
Tong Qin
Zhen Chen
J. Jakeman
D. Xiu
8
19
0
02 Jun 2020
The Random Feature Model for Input-Output Maps between Banach Spaces
Nicholas H. Nelsen
Andrew M. Stuart
21
141
0
20 May 2020
Deep-learning of Parametric Partial Differential Equations from Sparse and Noisy Data
Hao Xu
Dongxiao Zhang
Junsheng Zeng
25
57
0
16 May 2020
Learning reduced systems via deep neural networks with memory
Xiaohang Fu
L. Chang
D. Xiu
11
32
0
20 Mar 2020
Methods to Recover Unknown Processes in Partial Differential Equations Using Data
Zhen Chen
Kailiang Wu
D. Xiu
22
3
0
05 Mar 2020
Bayesian System ID: Optimal management of parameter, model, and measurement uncertainty
Nicholas Galioto
Alex Gorodetsky
17
32
0
04 Mar 2020
Data-Driven Discovery of Coarse-Grained Equations
Joseph Bakarji
D. Tartakovsky
37
32
0
30 Jan 2020
1
2
Next