Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.06864
Cited By
Quantifying Classification Uncertainty using Regularized Evidential Neural Networks
15 October 2019
Xujiang Zhao
Yuzhe Ou
Lance M. Kaplan
Feng Chen
Jin-Hee Cho
EDL
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Quantifying Classification Uncertainty using Regularized Evidential Neural Networks"
7 / 7 papers shown
Title
A Survey on Uncertainty Reasoning and Quantification for Decision Making: Belief Theory Meets Deep Learning
Zhen Guo
Zelin Wan
Qisheng Zhang
Xujiang Zhao
F. Chen
Jin-Hee Cho
Qi Zhang
Lance M. Kaplan
Dong-Ho Jeong
A. Jøsang
UQCV
EDL
22
10
0
12 Jun 2022
OpenTAL: Towards Open Set Temporal Action Localization
Wentao Bao
Qi Yu
Yu Kong
EDL
37
26
0
10 Mar 2022
Evidential Deep Learning for Open Set Action Recognition
Wentao Bao
Qi Yu
Yu Kong
CML
EDL
19
135
0
21 Jul 2021
Uncertainty-Aware Reliable Text Classification
Yibo Hu
Latifur Khan
EDL
UQCV
38
33
0
15 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
61
1,111
0
07 Jul 2021
Multidimensional Uncertainty-Aware Evidential Neural Networks
Yibo Hu
Yuzhe Ou
Xujiang Zhao
Jin-Hee Cho
Feng Chen
EDL
UQCV
AAML
33
23
0
26 Dec 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
1