Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.06539
Cited By
Challenges in Markov chain Monte Carlo for Bayesian neural networks
15 October 2019
Theodore Papamarkou
Jacob D. Hinkle
M. T. Young
D. Womble
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Challenges in Markov chain Monte Carlo for Bayesian neural networks"
20 / 20 papers shown
Title
Predictive Modeling and Uncertainty Quantification of Fatigue Life in Metal Alloys using Machine Learning
Jiang Chang
Deekshith Basvoju
Aleksandar Vakanski
Indrajit Charit
Min Xian
AI4CE
75
0
0
28 Jan 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
Peter Whalley
Neil K. Chada
Benedict Leimkuhler
BDL
77
4
0
14 Oct 2024
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
75
318
0
15 Feb 2020
Weight-space symmetry in deep networks gives rise to permutation saddles, connected by equal-loss valleys across the loss landscape
Johanni Brea
Berfin Simsek
Bernd Illing
W. Gerstner
83
55
0
05 Jul 2019
Rank-normalization, folding, and localization: An improved
R
^
\widehat{R}
R
for assessing convergence of MCMC
Aki Vehtari
Andrew Gelman
Daniel P. Simpson
Bob Carpenter
Paul-Christian Bürkner
37
926
0
19 Mar 2019
Exploring Weight Symmetry in Deep Neural Networks
S. Hu
Sergey Zagoruyko
N. Komodakis
33
33
0
28 Dec 2018
Revisiting the Gelman-Rubin Diagnostic
Dootika Vats
Christina Knudson
52
136
0
21 Dec 2018
Minibatch Gibbs Sampling on Large Graphical Models
Christopher De Sa
Vincent Chen
W. Wong
45
20
0
15 Jun 2018
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
85
44
0
12 Jun 2018
Accelerating MCMC Algorithms
Christian P. Robert
Victor Elvira
Nicholas G. Tawn
Changye Wu
60
141
0
08 Apr 2018
The Expressive Power of Neural Networks: A View from the Width
Zhou Lu
Hongming Pu
Feicheng Wang
Zhiqiang Hu
Liwei Wang
94
892
0
08 Sep 2017
Deep Learning: A Bayesian Perspective
Nicholas G. Polson
Vadim Sokolov
BDL
75
117
0
01 Jun 2017
Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
52
598
0
13 Apr 2017
Merging MCMC Subposteriors through Gaussian-Process Approximations
Christopher Nemeth
Chris Sherlock
54
50
0
27 May 2016
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
F. Iandola
Song Han
Matthew W. Moskewicz
Khalid Ashraf
W. Dally
Kurt Keutzer
137
7,465
0
24 Feb 2016
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
166
328
0
09 Feb 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
222
4,778
0
04 Jan 2016
Move Evaluation in Go Using Deep Convolutional Neural Networks
Chris J. Maddison
Aja Huang
Ilya Sutskever
David Silver
FAtt
59
134
0
20 Dec 2014
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
104
907
0
17 Feb 2014
Reversible Jump MCMC Simulated Annealing for Neural Networks
Christophe Andrieu
Nando de Freitas
Arnaud Doucet
BDL
51
48
0
16 Jan 2013
1