Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.06378
Cited By
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
14 October 2019
Sai Praneeth Karimireddy
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SCAFFOLD: Stochastic Controlled Averaging for Federated Learning"
37 / 87 papers shown
Title
Federated Learning on Non-IID Data Silos: An Experimental Study
Yue Liu
Yiqun Diao
Quan Chen
Bingsheng He
FedML
OOD
101
950
0
03 Feb 2021
Bandwidth Allocation for Multiple Federated Learning Services in Wireless Edge Networks
Jie Xu
Heqiang Wang
Lixing Chen
FedML
56
43
0
10 Jan 2021
Optimising cost vs accuracy of decentralised analytics in fog computing environments
Lorenzo Valerio
A. Passarella
M. Conti
35
1
0
09 Dec 2020
Local SGD: Unified Theory and New Efficient Methods
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
35
109
0
03 Nov 2020
Optimal Client Sampling for Federated Learning
Wenlin Chen
Samuel Horváth
Peter Richtárik
FedML
42
191
0
26 Oct 2020
Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms
Maruan Al-Shedivat
Jennifer Gillenwater
Eric P. Xing
Afshin Rostamizadeh
FedML
19
109
0
11 Oct 2020
Client Selection in Federated Learning: Convergence Analysis and Power-of-Choice Selection Strategies
Yae Jee Cho
Jianyu Wang
Gauri Joshi
FedML
47
401
0
03 Oct 2020
Practical One-Shot Federated Learning for Cross-Silo Setting
Qinbin Li
Bingsheng He
D. Song
FedML
18
114
0
02 Oct 2020
Distilled One-Shot Federated Learning
Yanlin Zhou
George Pu
Xiyao Ma
Xiaolin Li
D. Wu
FedML
DD
51
158
0
17 Sep 2020
Effective Federated Adaptive Gradient Methods with Non-IID Decentralized Data
Qianqian Tong
Guannan Liang
J. Bi
FedML
41
27
0
14 Sep 2020
On Communication Compression for Distributed Optimization on Heterogeneous Data
Sebastian U. Stich
50
23
0
04 Sep 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
34
0
0
26 Aug 2020
PowerGossip: Practical Low-Rank Communication Compression in Decentralized Deep Learning
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
FedML
11
54
0
04 Aug 2020
Fast-Convergent Federated Learning
Hung T. Nguyen
Vikash Sehwag
Seyyedali Hosseinalipour
Christopher G. Brinton
M. Chiang
H. Vincent Poor
FedML
26
192
0
26 Jul 2020
FetchSGD: Communication-Efficient Federated Learning with Sketching
D. Rothchild
Ashwinee Panda
Enayat Ullah
Nikita Ivkin
Ion Stoica
Vladimir Braverman
Joseph E. Gonzalez
Raman Arora
FedML
28
361
0
15 Jul 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
16
1,297
0
15 Jul 2020
Personalized Cross-Silo Federated Learning on Non-IID Data
Yutao Huang
Lingyang Chu
Zirui Zhou
Lanjun Wang
Jiangchuan Liu
J. Pei
Yong Zhang
FedML
20
591
0
07 Jul 2020
Federated Learning with Compression: Unified Analysis and Sharp Guarantees
Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
M. Mahdavi
FedML
39
273
0
02 Jul 2020
Robust Federated Learning: The Case of Affine Distribution Shifts
Amirhossein Reisizadeh
Farzan Farnia
Ramtin Pedarsani
Ali Jadbabaie
FedML
OOD
32
162
0
16 Jun 2020
Minibatch vs Local SGD for Heterogeneous Distributed Learning
Blake E. Woodworth
Kumar Kshitij Patel
Nathan Srebro
FedML
22
199
0
08 Jun 2020
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
212
60
0
30 Mar 2020
Federated Residual Learning
Alekh Agarwal
John Langford
Chen-Yu Wei
FedML
22
40
0
28 Mar 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
41
493
0
23 Mar 2020
Federated Continual Learning with Weighted Inter-client Transfer
Jaehong Yoon
Wonyoung Jeong
Giwoong Lee
Eunho Yang
Sung Ju Hwang
FedML
40
199
0
06 Mar 2020
Adaptive Federated Optimization
Sashank J. Reddi
Zachary B. Charles
Manzil Zaheer
Zachary Garrett
Keith Rush
Jakub Konecný
Sanjiv Kumar
H. B. McMahan
FedML
20
1,391
0
29 Feb 2020
Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization
Zhize Li
D. Kovalev
Xun Qian
Peter Richtárik
FedML
AI4CE
29
135
0
26 Feb 2020
Three Approaches for Personalization with Applications to Federated Learning
Yishay Mansour
M. Mohri
Jae Hun Ro
A. Suresh
FedML
45
565
0
25 Feb 2020
Uncertainty Principle for Communication Compression in Distributed and Federated Learning and the Search for an Optimal Compressor
M. Safaryan
Egor Shulgin
Peter Richtárik
32
60
0
20 Feb 2020
Personalized Federated Learning: A Meta-Learning Approach
Alireza Fallah
Aryan Mokhtari
Asuman Ozdaglar
FedML
36
561
0
19 Feb 2020
Is Local SGD Better than Minibatch SGD?
Blake E. Woodworth
Kumar Kshitij Patel
Sebastian U. Stich
Zhen Dai
Brian Bullins
H. B. McMahan
Ohad Shamir
Nathan Srebro
FedML
34
253
0
18 Feb 2020
FedDANE: A Federated Newton-Type Method
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
18
155
0
07 Jan 2020
Energy Efficient Federated Learning Over Wireless Communication Networks
Zhaohui Yang
Mingzhe Chen
Walid Saad
Choong Seon Hong
M. Shikh-Bahaei
30
681
0
06 Nov 2019
On the Convergence of Local Descent Methods in Federated Learning
Farzin Haddadpour
M. Mahdavi
FedML
19
266
0
31 Oct 2019
The Non-IID Data Quagmire of Decentralized Machine Learning
Kevin Hsieh
Amar Phanishayee
O. Mutlu
Phillip B. Gibbons
6
558
0
01 Oct 2019
The Error-Feedback Framework: Better Rates for SGD with Delayed Gradients and Compressed Communication
Sebastian U. Stich
Sai Praneeth Karimireddy
FedML
22
20
0
11 Sep 2019
Unified Optimal Analysis of the (Stochastic) Gradient Method
Sebastian U. Stich
26
112
0
09 Jul 2019
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
144
1,687
0
14 Apr 2018
Previous
1
2