Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.05446
Cited By
v1
v2
v3 (latest)
On Empirical Comparisons of Optimizers for Deep Learning
11 October 2019
Dami Choi
Christopher J. Shallue
Zachary Nado
Jaehoon Lee
Chris J. Maddison
George E. Dahl
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On Empirical Comparisons of Optimizers for Deep Learning"
5 / 105 papers shown
Title
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
Kihyuk Sohn
David Berthelot
Chun-Liang Li
Zizhao Zhang
Nicholas Carlini
E. D. Cubuk
Alexey Kurakin
Han Zhang
Colin Raffel
AAML
173
3,603
0
21 Jan 2020
Gradient descent with momentum --- to accelerate or to super-accelerate?
Goran Nakerst
John Brennan
M. Haque
ODL
33
15
0
17 Jan 2020
Individual predictions matter: Assessing the effect of data ordering in training fine-tuned CNNs for medical imaging
J. Zech
Jessica Zosa Forde
Michael L. Littman
38
5
0
08 Dec 2019
Optimizer Benchmarking Needs to Account for Hyperparameter Tuning
Prabhu Teja Sivaprasad
Florian Mai
Thijs Vogels
Martin Jaggi
François Fleuret
83
12
0
25 Oct 2019
Demon: Improved Neural Network Training with Momentum Decay
John Chen
Cameron R. Wolfe
Zhaoqi Li
Anastasios Kyrillidis
ODL
106
15
0
11 Oct 2019
Previous
1
2
3