ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.05338
  4. Cited By
TuNet: End-to-end Hierarchical Brain Tumor Segmentation using Cascaded
  Networks

TuNet: End-to-end Hierarchical Brain Tumor Segmentation using Cascaded Networks

11 October 2019
Minh H. Vu
T. Nyholm
Tommy Löfstedt
ArXivPDFHTML

Papers citing "TuNet: End-to-end Hierarchical Brain Tumor Segmentation using Cascaded Networks"

9 / 9 papers shown
Title
Using Synthetic Images to Augment Small Medical Image Datasets
Minh H. Vu
L. Tronchin
T. Nyholm
Tommy Löfstedt
MedIm
34
0
0
02 Mar 2025
Deep Neural Patchworks: Coping with Large Segmentation Tasks
Deep Neural Patchworks: Coping with Large Segmentation Tasks
M. Reisert
M. Russe
S. Elsheikh
E. Kellner
Henrik Skibbe
6
8
0
07 Jun 2022
TransBTSV2: Towards Better and More Efficient Volumetric Segmentation of
  Medical Images
TransBTSV2: Towards Better and More Efficient Volumetric Segmentation of Medical Images
Jiangyun Li
Wenxuan Wang
Chen Chen
Tianxiang Zhang
Sen Zha
Jing Wang
Hong Yu
ViT
MedIm
26
25
0
30 Jan 2022
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in
  Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking
  Results
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
Raghav Mehta
Angelos Filos
Ujjwal Baid
C. Sako
Richard McKinley
...
Christos Davatzikos
Bjoern H. Menze
Spyridon Bakas
Y. Gal
Tal Arbel
UQCV
22
44
0
19 Dec 2021
A Data-Adaptive Loss Function for Incomplete Data and Incremental
  Learning in Semantic Image Segmentation
A Data-Adaptive Loss Function for Incomplete Data and Incremental Learning in Semantic Image Segmentation
Minh H. Vu
Gabriella Norman
T. Nyholm
Tommy Löfstedt
MedIm
OOD
24
14
0
22 Apr 2021
Spatially Varying Label Smoothing: Capturing Uncertainty from Expert
  Annotations
Spatially Varying Label Smoothing: Capturing Uncertainty from Expert Annotations
Mobarakol Islam
Ben Glocker
UQCV
13
45
0
12 Apr 2021
Multi-Decoder Networks with Multi-Denoising Inputs for Tumor
  Segmentation
Multi-Decoder Networks with Multi-Denoising Inputs for Tumor Segmentation
Minh H. Vu
T. Nyholm
Tommy Löfstedt
MedIm
22
18
0
16 Nov 2020
Deep Learning Based Brain Tumor Segmentation: A Survey
Deep Learning Based Brain Tumor Segmentation: A Survey
Zhihua Liu
Lei Tong
Zheheng Jiang
Long Chen
Feixiang Zhou
Qianni Zhang
Xiangrong Zhang
Ling Li
Huiyu Zhou
3DV
24
228
0
18 Jul 2020
Evaluation of Multi-Slice Inputs to Convolutional Neural Networks for
  Medical Image Segmentation
Evaluation of Multi-Slice Inputs to Convolutional Neural Networks for Medical Image Segmentation
Minh H. Vu
G. Grimbergen
T. Nyholm
Tommy Löfstedt
SSeg
31
31
0
19 Dec 2019
1