ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.04256
  4. Cited By
Explaining image classifiers by removing input features using generative
  models
v1v2v3v4v5v6v7 (latest)

Explaining image classifiers by removing input features using generative models

9 October 2019
Chirag Agarwal
Anh Totti Nguyen
    FAtt
ArXiv (abs)PDFHTML

Papers citing "Explaining image classifiers by removing input features using generative models"

5 / 5 papers shown
Title
Deconfounding to Explanation Evaluation in Graph Neural Networks
Deconfounding to Explanation Evaluation in Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Helen Zhou
Fuli Feng
Xiangnan He
Tat-Seng Chua
FAttCML
87
14
0
21 Jan 2022
Generative Counterfactuals for Neural Networks via Attribute-Informed
  Perturbation
Generative Counterfactuals for Neural Networks via Attribute-Informed Perturbation
Fan Yang
Ninghao Liu
Mengnan Du
X. Hu
OOD
53
17
0
18 Jan 2021
Shapley explainability on the data manifold
Shapley explainability on the data manifold
Christopher Frye
Damien de Mijolla
T. Begley
Laurence Cowton
Megan Stanley
Ilya Feige
FAttTDI
73
102
0
01 Jun 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
134
83
0
17 Mar 2020
Deep Radar Waveform Design for Efficient Automotive Radar Sensing
Deep Radar Waveform Design for Efficient Automotive Radar Sensing
Shahin Khobahi
Arindam Bose
M. Soltanalian
42
18
0
17 Dec 2019
1