Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.03231
Cited By
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
8 October 2019
Yang Liu
Hongyi Guo
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates"
48 / 48 papers shown
Title
Exploring Criteria of Loss Reweighting to Enhance LLM Unlearning
Puning Yang
Qizhou Wang
Zhuo Huang
Tongliang Liu
Chengqi Zhang
Bo Han
MU
36
0
0
17 May 2025
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Weiran Pan
Wei Wei
Feida Zhu
Yong Deng
NoLa
265
0
0
24 Apr 2025
Noise-Resilient Point-wise Anomaly Detection in Time Series Using Weak Segment Labels
Yaxuan Wang
Hao Cheng
Jing Xiong
Qingsong Wen
Han Jia
Ruixuan Song
Li Zhang
Zhaowei Zhu
Yang Liu
AI4TS
67
1
0
21 Jan 2025
Effective and Robust Adversarial Training against Data and Label Corruptions
Pengfei Zhang
Zi Huang
Xin-Shun Xu
Guangdong Bai
56
4
0
07 May 2024
Optimizing Feature Selection for Binary Classification with Noisy Labels: A Genetic Algorithm Approach
Vandad Imani
Elaheh Moradi
C. Sevilla-Salcedo
Vittorio Fortino
Jussi Tohka
NoLa
37
0
0
12 Jan 2024
Learning with Noisy Labels: Interconnection of Two Expectation-Maximizations
Heewon Kim
Hyun Sung Chang
Kiho Cho
Jaeyun Lee
Bohyung Han
NoLa
28
2
0
09 Jan 2024
Mitigating the Impact of False Negatives in Dense Retrieval with Contrastive Confidence Regularization
Shiqi Wang
Yeqin Zhang
Cam-Tu Nguyen
37
2
0
30 Dec 2023
Learning to Segment from Noisy Annotations: A Spatial Correction Approach
Jiacheng Yao
Yikai Zhang
Songzhu Zheng
Mayank Goswami
Prateek Prasanna
Chao Chen
43
15
0
21 Jul 2023
Validation of the Practicability of Logical Assessment Formula for Evaluations with Inaccurate Ground-Truth Labels
Yongquan Yang
Hong Bu
31
0
0
06 Jul 2023
ReSup: Reliable Label Noise Suppression for Facial Expression Recognition
Xiang Zhang
Yan Lu
Huan Yan
Jingyang Huang
Yusheng Ji
Yu Gu
35
3
0
29 May 2023
BadLabel: A Robust Perspective on Evaluating and Enhancing Label-noise Learning
Jingfeng Zhang
Bo Song
Haohan Wang
Bo Han
Tongliang Liu
Lei Liu
Masashi Sugiyama
AAML
NoLa
39
14
0
28 May 2023
Unsupervised Domain-agnostic Fake News Detection using Multi-modal Weak Signals
Amila Silva
Ling Luo
S. Karunasekera
C. Leckie
26
5
0
18 May 2023
Bayes classifier cannot be learned from noisy responses with unknown noise rates
Soham Bakshi
Subha Maity
NoLa
24
0
0
13 Apr 2023
Fairness Improves Learning from Noisily Labeled Long-Tailed Data
Jiaheng Wei
Zhaowei Zhu
Gang Niu
Tongliang Liu
Sijia Liu
Masashi Sugiyama
Yang Liu
42
6
0
22 Mar 2023
Dynamics-Aware Loss for Learning with Label Noise
Xiu-Chuan Li
Xiaobo Xia
Fei Zhu
Tongliang Liu
Xu-Yao Zhang
Cheng-Lin Liu
NoLa
AI4CE
37
6
0
21 Mar 2023
Latent Class-Conditional Noise Model
Jiangchao Yao
Bo Han
Zhihan Zhou
Ya Zhang
Ivor W. Tsang
NoLa
BDL
33
8
0
19 Feb 2023
Smoothly Giving up: Robustness for Simple Models
Tyler Sypherd
Nathan Stromberg
Richard Nock
Visar Berisha
Lalitha Sankar
33
1
0
17 Feb 2023
Towards the Identifiability in Noisy Label Learning: A Multinomial Mixture Approach
Cuong C. Nguyen
Thanh-Toan Do
G. Carneiro
NoLa
42
0
0
04 Jan 2023
SplitNet: Learnable Clean-Noisy Label Splitting for Learning with Noisy Labels
Daehwan Kim
Kwang-seok Ryoo
Hansang Cho
Seung Wook Kim
NoLa
28
3
0
20 Nov 2022
Tackling Instance-Dependent Label Noise with Dynamic Distribution Calibration
Manyi Zhang
Yuxin Ren
Zihao Wang
C. Yuan
31
3
0
11 Oct 2022
TRBoost: A Generic Gradient Boosting Machine based on Trust-region Method
Jiaqi Luo
Zihao Wei
Junkai Man
Shi-qian Xu
29
8
0
28 Sep 2022
Instance-Dependent Noisy Label Learning via Graphical Modelling
Arpit Garg
Cuong C. Nguyen
Rafael Felix
Thanh-Toan Do
G. Carneiro
NoLa
39
27
0
02 Sep 2022
Centrality and Consistency: Two-Stage Clean Samples Identification for Learning with Instance-Dependent Noisy Labels
Ganlong Zhao
Guanbin Li
Yipeng Qin
Feng Liu
Yizhou Yu
NoLa
33
22
0
29 Jul 2022
Instance-Dependent Label-Noise Learning with Manifold-Regularized Transition Matrix Estimation
De Cheng
Tongliang Liu
Yixiong Ning
Nannan Wang
Bo Han
Gang Niu
Xinbo Gao
Masashi Sugiyama
NoLa
39
65
0
06 Jun 2022
Detecting Label Errors by using Pre-Trained Language Models
Derek Chong
Jenny Hong
Christopher D. Manning
NoLa
66
21
0
25 May 2022
Learning from Pixel-Level Noisy Label : A New Perspective for Light Field Saliency Detection
Mingtao Feng
Li-Yu Daisy Liu
Liangkai Zhang
Hongshan Yu
Yaonan Wang
Ajmal Mian
27
18
0
28 Apr 2022
UNICON: Combating Label Noise Through Uniform Selection and Contrastive Learning
Nazmul Karim
Mamshad Nayeem Rizve
Nazanin Rahnavard
Ajmal Mian
M. Shah
NoLa
42
98
0
28 Mar 2022
Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features
Zhaowei Zhu
Jialu Wang
Yang Liu
NoLa
38
37
0
02 Feb 2022
Do We Need to Penalize Variance of Losses for Learning with Label Noise?
Yexiong Lin
Yu Yao
Yuxuan Du
Jun Yu
Bo Han
Biwei Huang
Tongliang Liu
NoLa
53
3
0
30 Jan 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation
Zhao-Heng Yin
Pichao Wang
Fan Wang
Xianzhe Xu
Hanling Zhang
Hao Li
Rong Jin
41
39
0
02 Dec 2021
Constrained Instance and Class Reweighting for Robust Learning under Label Noise
Abhishek Kumar
Ehsan Amid
NoLa
35
19
0
09 Nov 2021
One-Step Abductive Multi-Target Learning with Diverse Noisy Samples and Its Application to Tumour Segmentation for Breast Cancer
Yongquan Yang
Fengling Li
Yani Wei
Jie Chen
Ning Chen
Mohammad H. Alobaidi
Hong Bu
31
8
0
20 Oct 2021
Mitigating Memorization of Noisy Labels via Regularization between Representations
Hao Cheng
Zhaowei Zhu
Xing Sun
Yang Liu
NoLa
43
28
0
18 Oct 2021
Detecting Corrupted Labels Without Training a Model to Predict
Zhaowei Zhu
Zihao Dong
Yang Liu
NoLa
149
62
0
12 Oct 2021
Being Properly Improper
Tyler Sypherd
Richard Nock
Lalitha Sankar
FaML
39
10
0
18 Jun 2021
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Jiaheng Wei
Hangyu Liu
Tongliang Liu
Gang Niu
Masashi Sugiyama
Yang Liu
NoLa
32
69
0
08 Jun 2021
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels
Erik Englesson
Hossein Azizpour
NoLa
34
104
0
10 May 2021
Do We Really Need Gold Samples for Sample Weighting Under Label Noise?
Aritra Ghosh
Andrew Lan
NoLa
31
9
0
19 Apr 2021
Contrastive Learning Improves Model Robustness Under Label Noise
Aritra Ghosh
Andrew Lan
NoLa
21
58
0
19 Apr 2021
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
Zhaowei Zhu
Yiwen Song
Yang Liu
NoLa
24
91
0
10 Feb 2021
Understanding the Interaction of Adversarial Training with Noisy Labels
Jianing Zhu
Jingfeng Zhang
Bo Han
Tongliang Liu
Gang Niu
Hongxia Yang
Mohan Kankanhalli
Masashi Sugiyama
AAML
27
27
0
06 Feb 2021
Provably End-to-end Label-Noise Learning without Anchor Points
Xuefeng Li
Tongliang Liu
Bo Han
Gang Niu
Masashi Sugiyama
NoLa
133
121
0
04 Feb 2021
A Second-Order Approach to Learning with Instance-Dependent Label Noise
Zhaowei Zhu
Tongliang Liu
Yang Liu
NoLa
22
127
0
22 Dec 2020
A Survey of Label-noise Representation Learning: Past, Present and Future
Bo Han
Quanming Yao
Tongliang Liu
Gang Niu
Ivor W. Tsang
James T. Kwok
Masashi Sugiyama
NoLa
24
159
0
09 Nov 2020
When Optimizing
f
f
f
-divergence is Robust with Label Noise
Jiaheng Wei
Yang Liu
24
54
0
07 Nov 2020
Incentives for Federated Learning: a Hypothesis Elicitation Approach
Yang Liu
Jiaheng Wei
FedML
42
21
0
21 Jul 2020
Learning from Noisy Labels with Deep Neural Networks: A Survey
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
NoLa
24
964
0
16 Jul 2020
Part-dependent Label Noise: Towards Instance-dependent Label Noise
Xiaobo Xia
Tongliang Liu
Bo Han
Nannan Wang
Biwei Huang
Haifeng Liu
Gang Niu
Dacheng Tao
Masashi Sugiyama
NoLa
13
67
0
14 Jun 2020
1