ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.01215
  4. Cited By
ES-MAML: Simple Hessian-Free Meta Learning

ES-MAML: Simple Hessian-Free Meta Learning

25 September 2019
Xingyou Song
Wenbo Gao
Yuxiang Yang
K. Choromanski
Aldo Pacchiano
Yunhao Tang
ArXivPDFHTML

Papers citing "ES-MAML: Simple Hessian-Free Meta Learning"

36 / 36 papers shown
Title
Coreset-Based Task Selection for Sample-Efficient Meta-Reinforcement Learning
Coreset-Based Task Selection for Sample-Efficient Meta-Reinforcement Learning
Donglin Zhan
Leonardo F. Toso
James Anderson
101
1
0
04 Feb 2025
A First Order Meta Stackelberg Method for Robust Federated Learning
A First Order Meta Stackelberg Method for Robust Federated Learning
Yunian Pan
Tao Li
Henger Li
Tianyi Xu
Zizhan Zheng
Quanyan Zhu
FedML
35
10
0
23 Jun 2023
Differentiable Arbitrating in Zero-sum Markov Games
Differentiable Arbitrating in Zero-sum Markov Games
Jing Wang
Meichen Song
Feng Gao
Boyi Liu
Zhaoran Wang
Yi Wu
43
2
0
20 Feb 2023
A Survey of Meta-Reinforcement Learning
A Survey of Meta-Reinforcement Learning
Jacob Beck
Risto Vuorio
E. Liu
Zheng Xiong
L. Zintgraf
Chelsea Finn
Shimon Whiteson
OOD
OffRL
37
124
0
19 Jan 2023
Multi-Modal Fusion by Meta-Initialization
Multi-Modal Fusion by Meta-Initialization
Matthew Jackson
Shreshth A. Malik
Michael T. Matthews
Yousuf Mohamed-Ahmed
36
0
0
10 Oct 2022
Learning Symbolic Model-Agnostic Loss Functions via Meta-Learning
Learning Symbolic Model-Agnostic Loss Functions via Meta-Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
FedML
31
11
0
19 Sep 2022
Lazy Queries Can Reduce Variance in Zeroth-order Optimization
Lazy Queries Can Reduce Variance in Zeroth-order Optimization
Quan-Wu Xiao
Qing Ling
Tianyi Chen
43
0
0
14 Jun 2022
A Comprehensive Survey of Few-shot Learning: Evolution, Applications,
  Challenges, and Opportunities
A Comprehensive Survey of Few-shot Learning: Evolution, Applications, Challenges, and Opportunities
Yisheng Song
Ting-Yuan Wang
S. Mondal
J. P. Sahoo
SLR
56
345
0
13 May 2022
Local Stochastic Bilevel Optimization with Momentum-Based Variance
  Reduction
Local Stochastic Bilevel Optimization with Momentum-Based Variance Reduction
Junyi Li
Feihu Huang
Heng-Chiao Huang
FedML
28
27
0
03 May 2022
Exploring hyper-parameter spaces of neuroscience models on high
  performance computers with Learning to Learn
Exploring hyper-parameter spaces of neuroscience models on high performance computers with Learning to Learn
Alper Yegenoglu
Anand Subramoney
T. Hater
Cristian Jimenez-Romero
W. Klijn
Aarn Pérez Martín
Michiel A. van der Vlag
Michael Herty
A. Morrison
Sandra Díaz-Pier
29
7
0
28 Feb 2022
Distributed Evolution Strategies Using TPUs for Meta-Learning
Distributed Evolution Strategies Using TPUs for Meta-Learning
Alex Sheng
J. He
13
2
0
01 Jan 2022
Dynamic Channel Access via Meta-Reinforcement Learning
Dynamic Channel Access via Meta-Reinforcement Learning
Ziyang Lu
M. C. Gursoy
32
4
0
24 Dec 2021
A Fully Single Loop Algorithm for Bilevel Optimization without Hessian
  Inverse
A Fully Single Loop Algorithm for Bilevel Optimization without Hessian Inverse
Junyi Li
Bin Gu
Heng-Chiao Huang
26
72
0
09 Dec 2021
On the Convergence Theory for Hessian-Free Bilevel Algorithms
On the Convergence Theory for Hessian-Free Bilevel Algorithms
Daouda Sow
Kaiyi Ji
Yingbin Liang
28
28
0
13 Oct 2021
Deep Reinforcement Learning Versus Evolution Strategies: A Comparative
  Survey
Deep Reinforcement Learning Versus Evolution Strategies: A Comparative Survey
Amjad Yousef Majid
Serge Saaybi
Tomas van Rietbergen
Vincent François-Lavet
R. V. Prasad
Chris Verhoeven
OffRL
62
55
0
28 Sep 2021
Few-shot Quality-Diversity Optimization
Few-shot Quality-Diversity Optimization
Achkan Salehi
Alexandre Coninx
Stéphane Doncieux
21
14
0
14 Sep 2021
Evolving Decomposed Plasticity Rules for Information-Bottlenecked
  Meta-Learning
Evolving Decomposed Plasticity Rules for Information-Bottlenecked Meta-Learning
Fan Wang
Hao Tian
Haoyi Xiong
Hua Wu
Jie Fu
Yang Cao
Yu Kang
Haifeng Wang
AI4CE
15
3
0
08 Sep 2021
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
AI4CE
19
5
0
04 Jun 2021
On Fast Adversarial Robustness Adaptation in Model-Agnostic
  Meta-Learning
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning
Ren Wang
Kaidi Xu
Sijia Liu
Pin-Yu Chen
Tsui-Wei Weng
Chuang Gan
Meng Wang
AAML
21
47
0
20 Feb 2021
Investigating Bi-Level Optimization for Learning and Vision from a
  Unified Perspective: A Survey and Beyond
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
62
223
0
27 Jan 2021
Inexact-ADMM Based Federated Meta-Learning for Fast and Continual Edge
  Learning
Inexact-ADMM Based Federated Meta-Learning for Fast and Continual Edge Learning
Sheng Yue
Ju Ren
Jiang Xin
Sen Lin
Junshan Zhang
FedML
27
44
0
16 Dec 2020
Learning Synthetic to Real Transfer for Localization and Navigational
  Tasks
Learning Synthetic to Real Transfer for Localization and Navigational Tasks
Maxime Pietrantoni
Boris Chidlovskii
T. Silander
22
0
0
20 Nov 2020
Solving Stochastic Compositional Optimization is Nearly as Easy as
  Solving Stochastic Optimization
Solving Stochastic Compositional Optimization is Nearly as Easy as Solving Stochastic Optimization
Tianyi Chen
Yuejiao Sun
W. Yin
48
81
0
25 Aug 2020
Contextualizing Enhances Gradient Based Meta Learning
Contextualizing Enhances Gradient Based Meta Learning
Evan Vogelbaum
Rumen Dangovski
L. Jing
Marin Soljacic
34
3
0
17 Jul 2020
Submodular Meta-Learning
Submodular Meta-Learning
Arman Adibi
Aryan Mokhtari
Hamed Hassani
CLL
21
5
0
11 Jul 2020
A Primer on Zeroth-Order Optimization in Signal Processing and Machine
  Learning
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
26
224
0
11 Jun 2020
UFO-BLO: Unbiased First-Order Bilevel Optimization
UFO-BLO: Unbiased First-Order Bilevel Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
34
7
0
05 Jun 2020
Meta-Learning in Neural Networks: A Survey
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
93
1,935
0
11 Apr 2020
Robotic Table Tennis with Model-Free Reinforcement Learning
Robotic Table Tennis with Model-Free Reinforcement Learning
Wenbo Gao
L. Graesser
K. Choromanski
Xingyou Song
N. Lazić
Pannag R. Sanketi
Vikas Sindhwani
Navdeep Jaitly
19
44
0
31 Mar 2020
Weighted Meta-Learning
Weighted Meta-Learning
Diana Cai
Rishit Sheth
Lester W. Mackey
Nicolò Fusi
39
12
0
20 Mar 2020
Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning
Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning
Xingyou Song
Yuxiang Yang
K. Choromanski
Ken Caluwaerts
Wenbo Gao
Chelsea Finn
Jie Tan
114
79
0
02 Mar 2020
Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning
Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning
Kaiyi Ji
Junjie Yang
Yingbin Liang
28
49
0
18 Feb 2020
Learning to Generate Synthetic 3D Training Data through Hybrid Gradient
Learning to Generate Synthetic 3D Training Data through Hybrid Gradient
Dawei Yang
Jia Deng
3DH
19
5
0
29 Jun 2019
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
176
666
0
07 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
460
11,715
0
09 Mar 2017
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
176
1,125
0
25 Jul 2012
1