ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.01155
  4. Cited By
Stochastic gradient descent for hybrid quantum-classical optimization
v1v2v3 (latest)

Stochastic gradient descent for hybrid quantum-classical optimization

2 October 2019
R. Sweke
Frederik Wilde
Johannes Jakob Meyer
Maria Schuld
Paul K. Fährmann
Barthélémy Meynard-Piganeau
Jens Eisert
ArXiv (abs)PDFHTML

Papers citing "Stochastic gradient descent for hybrid quantum-classical optimization"

17 / 17 papers shown
Title
Escaping from the Barren Plateau via Gaussian Initializations in Deep Variational Quantum Circuits
Escaping from the Barren Plateau via Gaussian Initializations in Deep Variational Quantum Circuits
Kaining Zhang
Liu Liu
Min-hsiu Hsieh
Dacheng Tao
125
63
0
20 Feb 2025
Diffusion-Inspired Quantum Noise Mitigation in Parameterized Quantum Circuits
Diffusion-Inspired Quantum Noise Mitigation in Parameterized Quantum Circuits
Hoang-Quan Nguyen
Xuan-Bac Nguyen
Samuel Yen-Chi Chen
Hugh Churchill
Nicholas Borys
Samee U. Khan
Khoa Luu
DiffM
75
5
0
02 Jun 2024
Training-efficient density quantum machine learning
Training-efficient density quantum machine learning
Brian Coyle
El Amine Cherrat
Nishant Jain
Natansh Mathur
Snehal Raj
Skander Kazdaghli
Iordanis Kerenidis
101
5
0
30 May 2024
Stochastic noise can be helpful for variational quantum algorithms
Stochastic noise can be helpful for variational quantum algorithms
Junyu Liu
Frederik Wilde
A. A. Mele
Liang Jiang
Jens Eisert
Jens Eisert
61
34
0
13 Oct 2022
Noise-Resilient Variational Hybrid Quantum-Classical Optimization
Noise-Resilient Variational Hybrid Quantum-Classical Optimization
Laura Gentini
A. Cuccoli
S. Pirandola
P. Verrucchi
L. Banchi
51
26
0
13 Dec 2019
Parameterized quantum circuits as machine learning models
Parameterized quantum circuits as machine learning models
Marcello Benedetti
Erika Lloyd
Stefan H. Sack
Mattia Fiorentini
107
895
0
18 Jun 2019
Tight Dimension Independent Lower Bound on the Expected Convergence Rate
  for Diminishing Step Sizes in SGD
Tight Dimension Independent Lower Bound on the Expected Convergence Rate for Diminishing Step Sizes in SGD
Phuong Ha Nguyen
Lam M. Nguyen
Marten van Dijk
LRM
50
31
0
10 Oct 2018
Stochastic Gradient Descent with Biased but Consistent Gradient
  Estimators
Stochastic Gradient Descent with Biased but Consistent Gradient Estimators
Jie Chen
Ronny Luss
79
45
0
31 Jul 2018
On the Convergence of Stochastic Gradient Descent with Adaptive
  Stepsizes
On the Convergence of Stochastic Gradient Descent with Adaptive Stepsizes
Xiaoyun Li
Francesco Orabona
69
298
0
21 May 2018
Supervised learning with quantum enhanced feature spaces
Supervised learning with quantum enhanced feature spaces
Vojtěch Havlíček
A. Córcoles
K. Temme
A. Harrow
A. Kandala
J. Chow
J. Gambetta
84
1,833
0
30 Apr 2018
An Alternative View: When Does SGD Escape Local Minima?
An Alternative View: When Does SGD Escape Local Minima?
Robert D. Kleinberg
Yuanzhi Li
Yang Yuan
MLT
77
317
0
17 Feb 2018
Don't Decay the Learning Rate, Increase the Batch Size
Don't Decay the Learning Rate, Increase the Batch Size
Samuel L. Smith
Pieter-Jan Kindermans
Chris Ying
Quoc V. Le
ODL
107
996
0
01 Nov 2017
An overview of gradient descent optimization algorithms
An overview of gradient descent optimization algorithms
Sebastian Ruder
ODL
206
6,203
0
15 Sep 2016
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
280
1,221
0
16 Aug 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
Scalable Kernel Methods via Doubly Stochastic Gradients
Scalable Kernel Methods via Doubly Stochastic Gradients
Bo Dai
Bo Xie
Niao He
Yingyu Liang
Anant Raj
Maria-Florina Balcan
Le Song
150
230
0
21 Jul 2014
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient
  Descent
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
201
2,273
0
28 Jun 2011
1