Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.00928
Cited By
Deep learning at scale for subgrid modeling in turbulent flows
1 October 2019
Mathis Bode
M. Gauding
K. Kleinheinz
H. Pitsch
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep learning at scale for subgrid modeling in turbulent flows"
8 / 8 papers shown
Title
Redefining Super-Resolution: Fine-mesh PDE predictions without classical simulations
Rajat Kumar Sarkar
Ritam Majumdar
Vishal Sudam Jadhav
Sakhinana Sagar Srinivas
Venkataramana Runkana
AI4CE
DiffM
29
2
0
16 Nov 2023
Super-Resolution Analysis via Machine Learning: A Survey for Fluid Flows
Kai Fukami
K. Fukagata
Kunihiko Taira
AI4CE
19
104
0
26 Jan 2023
Applying Physics-Informed Enhanced Super-Resolution Generative Adversarial Networks to Turbulent Non-Premixed Combustion on Non-Uniform Meshes and Demonstration of an Accelerated Simulation Workflow
Mathis Bode
AI4CE
22
3
0
28 Oct 2022
Applying Physics-Informed Enhanced Super-Resolution Generative Adversarial Networks to Finite-Rate-Chemistry Flows and Predicting Lean Premixed Gas Turbine Combustors
Mathis Bode
AI4CE
27
4
0
28 Oct 2022
Applying Physics-Informed Enhanced Super-Resolution Generative Adversarial Networks to Turbulent Premixed Combustion and Engine-like Flame Kernel Direct Numerical Simulation Data
Mathis Bode
M. Gauding
Dominik Goeb
Tobias Falkenstein
H. Pitsch
AI4CE
30
17
0
28 Oct 2022
Automated Dissipation Control for Turbulence Simulation with Shell Models
Ann-Kathrin Dombrowski
Klaus-Robert Muller
W. Müller
AI4CE
21
0
0
07 Jan 2022
Deep Learning for Efficient Reconstruction of High-Resolution Turbulent DNS Data
Pranshu Pant
A. Farimani
AI4CE
13
12
0
21 Oct 2020
Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows
Mathis Bode
M. Gauding
Zeyu Lian
D. Denker
M. Davidovic
K. Kleinheinz
J. Jitsev
H. Pitsch
AI4CE
14
21
0
26 Nov 2019
1