Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.00617
Cited By
Predicting materials properties without crystal structure: Deep representation learning from stoichiometry
1 October 2019
Rhys E. A. Goodall
A. Lee
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Predicting materials properties without crystal structure: Deep representation learning from stoichiometry"
20 / 20 papers shown
Title
Learning simple heuristic rules for classifying materials based on chemical composition
Andrew Ma
Marin Soljacic
28
0
0
05 May 2025
Neural Network Emulator for Atmospheric Chemical ODE
Zhi-Song Liu
Petri S. Clusius
Michael Boy
42
3
0
03 Aug 2024
Materials Informatics Transformer: A Language Model for Interpretable Materials Properties Prediction
Hongshuo Huang
Rishikesh Magar
Chang Xu
A. Farimani
AI4CE
38
4
0
30 Aug 2023
Matbench Discovery -- A framework to evaluate machine learning crystal stability predictions
Janosh Riebesell
Rhys E. A. Goodall
Philipp Benner
Chiang Yuan
Bowen Deng
A. Lee
Anubhav Jain
Kristin A. Persson
OOD
36
35
0
28 Aug 2023
Leveraging Language Representation for Material Recommendation, Ranking, and Exploration
Jiaxing Qu
Yuxuan Richard Xie
K. Ciesielski
Claire E. Porter
E. Toberer
Elif Ertekin
29
3
0
01 May 2023
Closed-loop Error Correction Learning Accelerates Experimental Discovery of Thermoelectric Materials
Hitarth Choubisa
Md Azimul Haque
Tong Zhu
Lewei Zeng
Maral Vafaie
Derya Baran
E. Sargent
17
1
0
26 Feb 2023
Precursor recommendation for inorganic synthesis by machine learning materials similarity from scientific literature
T. He
Haoyan Huo
Christopher J. Bartel
Zheren Wang
Kevin Cruse
Gerbrand Ceder
32
32
0
05 Feb 2023
Neural Structure Fields with Application to Crystal Structure Autoencoders
Naoya Chiba
Yuta Suzuki
Tatsunori Taniai
Ryo Igarashi
Yoshitaka Ushiku
Kotaro Saito
K. Ono
24
4
0
08 Dec 2022
Composition based oxidation state prediction of materials using deep learning
Nihang Fu
Jeffrey Hu
Yingqi Feng
G. Morrison
H. Loye
Jianjun Hu
43
1
0
29 Nov 2022
Deep Reinforcement Learning for Inverse Inorganic Materials Design
Elton Pan
Christopher Karpovich
E. Olivetti
AI4CE
27
11
0
21 Oct 2022
Large-scale machine-learning-assisted exploration of the whole materials space
Jonathan Schmidt
Noah Hoffmann
Hai-Chen Wang
Pedro Borlido
Pedro J. M. A. Carriço
Tiago F. T. Cerqueira
S. Botti
Miguel A. L. Marques
AI4CE
8
17
0
02 Oct 2022
Periodic Graph Transformers for Crystal Material Property Prediction
Keqiang Yan
Yi Liu
Yu-Ching Lin
Shuiwang Ji
AI4TS
88
84
0
23 Sep 2022
Artificial Intelligence in Material Engineering: A review on applications of AI in Material Engineering
Lipichanda Goswami
Manoj Deka
Mohendra Roy
AI4CE
37
19
0
15 Sep 2022
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
50
373
0
05 Aug 2022
Semi-supervised teacher-student deep neural network for materials discovery
Daniel Gleaves
Edirisuriya M Dilanga Siriwardane
Yong Zhao
Nihang Fu
Jianjun Hu
PINN
31
2
0
12 Dec 2021
Scalable deeper graph neural networks for high-performance materials property prediction
Sadman Sadeed Omee
Steph-Yves M. Louis
Nihang Fu
Lai Wei
Sourin Dey
Rongzhi Dong
Qinyang Li
Jianjun Hu
70
73
0
25 Sep 2021
Distributed Representations of Atoms and Materials for Machine Learning
Luis M. Antunes
R. Grau‐Crespo
K. Butler
AI4CE
8
26
0
30 Jul 2021
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
34
287
0
26 Jul 2021
BoostTree and BoostForest for Ensemble Learning
Changming Zhao
Dongrui Wu
Jian Huang
Ye Yuan
Hai-Tao Zhang
Ruimin Peng
Zhenhua Shi
32
33
0
21 Mar 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
1