Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.13806
Cited By
Min-Max Optimization without Gradients: Convergence and Applications to Adversarial ML
30 September 2019
Sijia Liu
Songtao Lu
Xiangyi Chen
Yao Feng
Kaidi Xu
Abdullah Al-Dujaili
Mingyi Hong
Una-May Obelilly
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Min-Max Optimization without Gradients: Convergence and Applications to Adversarial ML"
9 / 9 papers shown
Title
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
A. Mumuni
F. Mumuni
70
5
0
13 Mar 2024
Certified Zeroth-order Black-Box Defense with Robust UNet Denoiser
Astha Verma
A. Subramanyam
Siddhesh Bangar
Naman Lal
R. Shah
Shiníchi Satoh
45
4
0
13 Apr 2023
How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective
Yimeng Zhang
Yuguang Yao
Jinghan Jia
Jinfeng Yi
Min-Fong Hong
Shiyu Chang
Sijia Liu
AAML
28
33
0
27 Mar 2022
Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks
Avi Schwarzschild
Micah Goldblum
Arjun Gupta
John P. Dickerson
Tom Goldstein
AAML
TDI
21
162
0
22 Jun 2020
The limits of min-max optimization algorithms: convergence to spurious non-critical sets
Ya-Ping Hsieh
P. Mertikopoulos
V. Cevher
35
81
0
16 Jun 2020
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
26
224
0
11 Jun 2020
Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved Complexities
Zhongruo Wang
Krishnakumar Balasubramanian
Shiqian Ma
Meisam Razaviyayn
21
25
0
22 Jan 2020
Adversarial Attack Generation Empowered by Min-Max Optimization
Jingkang Wang
Tianyun Zhang
Sijia Liu
Pin-Yu Chen
Jiacen Xu
M. Fardad
Yangqiu Song
AAML
30
35
0
09 Jun 2019
Frank-Wolfe Algorithms for Saddle Point Problems
Gauthier Gidel
Tony Jebara
Simon Lacoste-Julien
42
70
0
25 Oct 2016
1