ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.13135
11
17

Facial Expression Recognition Using Disentangled Adversarial Learning

28 September 2019
Kamran Ali
C. Hughes
    GAN
    DRL
ArXivPDFHTML
Abstract

The representation used for Facial Expression Recognition (FER) usually contain expression information along with other variations such as identity and illumination. In this paper, we propose a novel Disentangled Expression learning-Generative Adversarial Network (DE-GAN) to explicitly disentangle facial expression representation from identity information. In this learning by reconstruction method, facial expression representation is learned by reconstructing an expression image employing an encoder-decoder based generator. This expression representation is disentangled from identity component by explicitly providing the identity code to the decoder part of DE-GAN. The process of expression image reconstruction and disentangled expression representation learning is improved by performing expression and identity classification in the discriminator of DE-GAN. The disentangled facial expression representation is then used for facial expression recognition employing simple classifiers like SVM or MLP. The experiments are performed on publicly available and widely used face expression databases (CK+, MMI, Oulu-CASIA). The experimental results show that the proposed technique produces comparable results with state-of-the-art methods.

View on arXiv
Comments on this paper