ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.12790
  4. Cited By
Hamiltonian Graph Networks with ODE Integrators

Hamiltonian Graph Networks with ODE Integrators

27 September 2019
Alvaro Sanchez-Gonzalez
V. Bapst
Kyle Cranmer
Peter W. Battaglia
    AI4CE
ArXivPDFHTML

Papers citing "Hamiltonian Graph Networks with ODE Integrators"

50 / 58 papers shown
Title
Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks
Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks
Ziqiang Liu
Xiaoda Wang
Bohan Wang
Zijie Huang
Carl Yang
Wei-dong Jin
AI4TS
AI4CE
170
1
0
29 Mar 2025
Learning System Dynamics without Forgetting
Learning System Dynamics without Forgetting
Xikun Zhang
Dongjin Song
Yushan Jiang
Yixin Chen
Dacheng Tao
AI4CE
37
2
0
30 Jun 2024
Graph Neural Reaction Diffusion Models
Graph Neural Reaction Diffusion Models
Moshe Eliasof
Eldad Haber
Eran Treister
DiffM
AI4CE
38
2
0
16 Jun 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
34
20
0
01 Mar 2024
Equivariant Graph Neural Operator for Modeling 3D Dynamics
Equivariant Graph Neural Operator for Modeling 3D Dynamics
Minkai Xu
Jiaqi Han
Aaron Lou
Jean Kossaifi
Arvind Ramanathan
Kamyar Azizzadenesheli
J. Leskovec
Stefano Ermon
A. Anandkumar
AI4CE
37
17
0
19 Jan 2024
Discovering Symbolic Laws Directly from Trajectories with Hamiltonian
  Graph Neural Networks
Discovering Symbolic Laws Directly from Trajectories with Hamiltonian Graph Neural Networks
S. Bishnoi
Ravinder Bhattoo
J. Jayadeva
Sayan Ranu
N. M. A. Krishnan
PINN
AI4CE
34
1
0
11 Jul 2023
Learning Dynamical Systems from Noisy Data with Inverse-Explicit
  Integrators
Learning Dynamical Systems from Noisy Data with Inverse-Explicit Integrators
Haakon Noren
Sølve Eidnes
E. Celledoni
21
3
0
06 Jun 2023
Equivariant Neural Simulators for Stochastic Spatiotemporal Dynamics
Equivariant Neural Simulators for Stochastic Spatiotemporal Dynamics
Koen Minartz
Y. Poels
Simon Koop
Vlado Menkovski
30
5
0
23 May 2023
On the Relationships between Graph Neural Networks for the Simulation of
  Physical Systems and Classical Numerical Methods
On the Relationships between Graph Neural Networks for the Simulation of Physical Systems and Classical Numerical Methods
Artur P. Toshev
Ludger Paehler
A. Panizza
Nikolaus A. Adams
AI4CE
PINN
19
5
0
31 Mar 2023
EqMotion: Equivariant Multi-agent Motion Prediction with Invariant
  Interaction Reasoning
EqMotion: Equivariant Multi-agent Motion Prediction with Invariant Interaction Reasoning
Chenxin Xu
R. Tan
Yuhong Tan
Siheng Chen
Yu Wang
Xinchao Wang
Yanfeng Wang
35
96
0
20 Mar 2023
Towards Cross Domain Generalization of Hamiltonian Representation via
  Meta Learning
Towards Cross Domain Generalization of Hamiltonian Representation via Meta Learning
Yeongwoo Song
Hawoong Jeong
OOD
AI4CE
24
1
0
02 Dec 2022
Unravelling the Performance of Physics-informed Graph Neural Networks
  for Dynamical Systems
Unravelling the Performance of Physics-informed Graph Neural Networks for Dynamical Systems
A. Thangamuthu
Gunjan Kumar
S. Bishnoi
Ravinder Bhattoo
N. M. A. Krishnan
Sayan Ranu
AI4CE
PINN
37
22
0
10 Nov 2022
Thermodynamics-informed neural networks for physically realistic mixed
  reality
Thermodynamics-informed neural networks for physically realistic mixed reality
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
PINN
AI4CE
22
16
0
24 Oct 2022
Learning Physical Dynamics with Subequivariant Graph Neural Networks
Learning Physical Dynamics with Subequivariant Graph Neural Networks
Jiaqi Han
Wenbing Huang
Hengbo Ma
Jiachen Li
J. Tenenbaum
Chuang Gan
AI4CE
PINN
40
43
0
13 Oct 2022
Guaranteed Conservation of Momentum for Learning Particle-based Fluid
  Dynamics
Guaranteed Conservation of Momentum for Learning Particle-based Fluid Dynamics
L. Prantl
Benjamin Ummenhofer
V. Koltun
Nils Thuerey
AI4CE
PINN
26
29
0
12 Oct 2022
Exact conservation laws for neural network integrators of dynamical
  systems
Exact conservation laws for neural network integrators of dynamical systems
E. Müller
PINN
41
12
0
23 Sep 2022
Learning Articulated Rigid Body Dynamics with Lagrangian Graph Neural
  Network
Learning Articulated Rigid Body Dynamics with Lagrangian Graph Neural Network
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
AI4CE
34
17
0
23 Sep 2022
Learning the Dynamics of Particle-based Systems with Lagrangian Graph
  Neural Networks
Learning the Dynamics of Particle-based Systems with Lagrangian Graph Neural Networks
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
PINN
AI4CE
42
20
0
03 Sep 2022
Constants of motion network
Constants of motion network
M. F. Kasim
Yi Heng Lim
37
4
0
22 Aug 2022
Lagrangian Density Space-Time Deep Neural Network Topology
Lagrangian Density Space-Time Deep Neural Network Topology
B. Bishnoi
PINN
25
1
0
30 Jun 2022
ACMP: Allen-Cahn Message Passing for Graph Neural Networks with Particle
  Phase Transition
ACMP: Allen-Cahn Message Passing for Graph Neural Networks with Particle Phase Transition
Yuelin Wang
Kai Yi
Xinliang Liu
Yu Guang Wang
Shi Jin
21
33
0
11 Jun 2022
Towards Fast Simulation of Environmental Fluid Mechanics with
  Multi-Scale Graph Neural Networks
Towards Fast Simulation of Environmental Fluid Mechanics with Multi-Scale Graph Neural Networks
Mario Lino
Stathi Fotiadis
Anil A. Bharath
C. Cantwell
AI4CE
11
12
0
05 May 2022
Graph Anisotropic Diffusion
Graph Anisotropic Diffusion
Ahmed A. A. Elhag
Gabriele Corso
Hannes Stärk
Michael M. Bronstein
DiffM
GNN
25
0
0
30 Apr 2022
Dimensionless machine learning: Imposing exact units equivariance
Dimensionless machine learning: Imposing exact units equivariance
Soledad Villar
Weichi Yao
D. Hogg
Ben Blum-Smith
Bianca Dumitrascu
16
26
0
02 Apr 2022
Equivariant Graph Mechanics Networks with Constraints
Equivariant Graph Mechanics Networks with Constraints
Wen-bing Huang
J. Han
Yu Rong
Tingyang Xu
Gang Hua
Junzhou Huang
AI4CE
38
79
0
12 Mar 2022
Thermodynamics-informed graph neural networks
Thermodynamics-informed graph neural networks
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
AI4CE
PINN
32
31
0
03 Mar 2022
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Zhijie Chen
Mingquan Feng
Junchi Yan
H. Zha
AI4CE
21
15
0
28 Feb 2022
Learning to Simulate Unseen Physical Systems with Graph Neural Networks
Learning to Simulate Unseen Physical Systems with Graph Neural Networks
Ce Yang
Weihao Gao
Di Wu
Chong-Jun Wang
PINN
AI4CE
30
4
0
28 Jan 2022
Dissipative Hamiltonian Neural Networks: Learning Dissipative and
  Conservative Dynamics Separately
Dissipative Hamiltonian Neural Networks: Learning Dissipative and Conservative Dynamics Separately
A. Sosanya
S. Greydanus
PINN
AI4CE
44
28
0
25 Jan 2022
Constraint-based graph network simulator
Constraint-based graph network simulator
Yulia Rubanova
Alvaro Sanchez-Gonzalez
Tobias Pfaff
Peter W. Battaglia
PINN
AI4CE
32
28
0
16 Dec 2021
Hamiltonian latent operators for content and motion disentanglement in
  image sequences
Hamiltonian latent operators for content and motion disentanglement in image sequences
Asif Khan
Amos Storkey
29
2
0
02 Dec 2021
Physics-enhanced Neural Networks in the Small Data Regime
Physics-enhanced Neural Networks in the Small Data Regime
Jonas Eichelsdörfer
Sebastian Kaltenbach
P. Koutsourelakis
AI4CE
PINN
16
5
0
19 Nov 2021
Which priors matter? Benchmarking models for learning latent dynamics
Which priors matter? Benchmarking models for learning latent dynamics
Aleksandar Botev
Andrew Jaegle
Peter Wirnsberger
Daniel Hennes
I. Higgins
AI4CE
35
28
0
09 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical
  Systems
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
33
93
0
02 Nov 2021
One-Shot Transfer Learning of Physics-Informed Neural Networks
One-Shot Transfer Learning of Physics-Informed Neural Networks
Shaan Desai
M. Mattheakis
H. Joy
P. Protopapas
Stephen J. Roberts
PINN
AI4CE
27
58
0
21 Oct 2021
Combining Physics and Deep Learning to learn Continuous-Time Dynamics
  Models
Combining Physics and Deep Learning to learn Continuous-Time Dynamics Models
M. Lutter
Jan Peters
PINN
AI4CE
33
39
0
05 Oct 2021
An Extensible Benchmark Suite for Learning to Simulate Physical Systems
An Extensible Benchmark Suite for Learning to Simulate Physical Systems
Karl Otness
Arvi Gjoka
Joan Bruna
Daniele Panozzo
Benjamin Peherstorfer
T. Schneider
Denis Zorin
24
23
0
09 Aug 2021
Reasoning-Modulated Representations
Reasoning-Modulated Representations
Petar Velivcković
Matko Bovsnjak
Thomas Kipf
Alexander Lerchner
R. Hadsell
Razvan Pascanu
Charles Blundell
OCL
OOD
SSL
18
15
0
19 Jul 2021
Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent
  Dynamical Systems
Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems
Shaan Desai
M. Mattheakis
David Sondak
P. Protopapas
Stephen J. Roberts
AI4CE
30
43
0
16 Jul 2021
Machine learning structure preserving brackets for forecasting
  irreversible processes
Machine learning structure preserving brackets for forecasting irreversible processes
Kookjin Lee
Nathaniel Trask
P. Stinis
AI4CE
44
42
0
23 Jun 2021
GRAND: Graph Neural Diffusion
GRAND: Graph Neural Diffusion
B. Chamberlain
J. Rowbottom
Maria I. Gorinova
Stefan Webb
Emanuele Rossi
M. Bronstein
GNN
39
253
0
21 Jun 2021
Scalars are universal: Equivariant machine learning, structured like
  classical physics
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
Adaptable Hamiltonian neural networks
Adaptable Hamiltonian neural networks
Chen-Di Han
Bryan Glaz
Mulugeta Haile
Y. Lai
AI4TS
30
25
0
25 Feb 2021
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Juntang Zhuang
Nicha Dvornek
S. Tatikonda
James S. Duncan
27
49
0
09 Feb 2021
LieTransformer: Equivariant self-attention for Lie Groups
LieTransformer: Equivariant self-attention for Lie Groups
M. Hutchinson
Charline Le Lan
Sheheryar Zaidi
Emilien Dupont
Yee Whye Teh
Hyunjik Kim
26
111
0
20 Dec 2020
Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit
  Constraints
Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints
Marc Finzi
Ke Alexander Wang
A. Wilson
AI4CE
34
126
0
26 Oct 2020
Learning Physical Constraints with Neural Projections
Learning Physical Constraints with Neural Projections
Shuqi Yang
Xingzhe He
Bo Zhu
3DV
AI4CE
41
25
0
23 Jun 2020
Lipschitz Recurrent Neural Networks
Lipschitz Recurrent Neural Networks
N. Benjamin Erichson
Omri Azencot
A. Queiruga
Liam Hodgkinson
Michael W. Mahoney
30
107
0
22 Jun 2020
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
139
424
0
10 Mar 2020
Differentiable Molecular Simulations for Control and Learning
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
109
49
0
27 Feb 2020
12
Next