ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.12637
  4. Cited By
MGP-AttTCN: An Interpretable Machine Learning Model for the Prediction
  of Sepsis

MGP-AttTCN: An Interpretable Machine Learning Model for the Prediction of Sepsis

27 September 2019
Margherita Rosnati
Vincent Fortuin
ArXivPDFHTML

Papers citing "MGP-AttTCN: An Interpretable Machine Learning Model for the Prediction of Sepsis"

2 / 2 papers shown
Title
MUSE-Net: Missingness-aware mUlti-branching Self-attention Encoder for Irregular Longitudinal Electronic Health Records
MUSE-Net: Missingness-aware mUlti-branching Self-attention Encoder for Irregular Longitudinal Electronic Health Records
Zekai Wang
Tieming Liu
B. Yao
39
0
0
30 Jun 2024
Sparse Gaussian Process Variational Autoencoders
Sparse Gaussian Process Variational Autoencoders
Matthew Ashman
Jonathan So
Will Tebbutt
Vincent Fortuin
Michael Pearce
Richard Turner
24
33
0
20 Oct 2020
1