ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.11810
  4. Cited By
Mixed Dimension Embeddings with Application to Memory-Efficient
  Recommendation Systems

Mixed Dimension Embeddings with Application to Memory-Efficient Recommendation Systems

25 September 2019
Antonio A. Ginart
Maxim Naumov
Dheevatsa Mudigere
Jiyan Yang
James Zou
ArXivPDFHTML

Papers citing "Mixed Dimension Embeddings with Application to Memory-Efficient Recommendation Systems"

17 / 17 papers shown
Title
Fine-Grained Embedding Dimension Optimization During Training for
  Recommender Systems
Fine-Grained Embedding Dimension Optimization During Training for Recommender Systems
Qinyi Luo
Penghan Wang
Wei Zhang
Fan Lai
Jiachen Mao
...
Jun Song
Wei-Yu Tsai
Shuai Yang
Yuxi Hu
Xuehai Qian
50
0
0
09 Jan 2024
Enhancing Cross-Category Learning in Recommendation Systems with
  Multi-Layer Embedding Training
Enhancing Cross-Category Learning in Recommendation Systems with Multi-Layer Embedding Training
Selim F. Yilmaz
Benjamin Ghaemmaghami
A. Singh
Benjamin Cho
Leo Orshansky
Lei Deng
Michael Orshansky
AI4TS
28
0
0
27 Sep 2023
Mem-Rec: Memory Efficient Recommendation System using Alternative
  Representation
Mem-Rec: Memory Efficient Recommendation System using Alternative Representation
Gopu Krishna Jha
Anthony Thomas
Nilesh Jain
Sameh Gobriel
Tajana Rosing
Ravi Iyer
53
2
0
12 May 2023
Clustered Embedding Learning for Recommender Systems
Clustered Embedding Learning for Recommender Systems
Yizhou Chen
Guangda Huzhang
Anxiang Zeng
Qingtao Yu
Hui Sun
Hengyi Li
Jingyi Li
Yabo Ni
Han Yu
Zhiming Zhou
29
9
0
03 Feb 2023
A Frequency-aware Software Cache for Large Recommendation System
  Embeddings
A Frequency-aware Software Cache for Large Recommendation System Embeddings
Jiarui Fang
Geng Zhang
Jiatong Han
Shenggui Li
Zhengda Bian
Yongbin Li
Jin Liu
Yang You
26
3
0
08 Aug 2022
CowClip: Reducing CTR Prediction Model Training Time from 12 hours to 10
  minutes on 1 GPU
CowClip: Reducing CTR Prediction Model Training Time from 12 hours to 10 minutes on 1 GPU
Zangwei Zheng
Peng Xu
Xuan Zou
Da Tang
Zhen Li
...
Xiangzhuo Ding
Fuzhao Xue
Ziheng Qing
Youlong Cheng
Yang You
VLM
44
7
0
13 Apr 2022
Learning to Collide: Recommendation System Model Compression with
  Learned Hash Functions
Learning to Collide: Recommendation System Model Compression with Learned Hash Functions
Benjamin Ghaemmaghami
Mustafa Ozdal
Rakesh Komuravelli
D. Korchev
Dheevatsa Mudigere
Krishnakumar Nair
Maxim Naumov
39
6
0
28 Mar 2022
Learning Compressed Embeddings for On-Device Inference
Learning Compressed Embeddings for On-Device Inference
Niketan Pansare
J. Katukuri
Aditya Arora
F. Cipollone
R. Shaik
Noyan Tokgozoglu
Chandru Venkataraman
37
14
0
18 Mar 2022
Enhanced Exploration in Neural Feature Selection for Deep Click-Through
  Rate Prediction Models via Ensemble of Gating Layers
Enhanced Exploration in Neural Feature Selection for Deep Click-Through Rate Prediction Models via Ensemble of Gating Layers
L. Guan
Xia Xiao
Ming-yue Chen
Youlong Cheng
27
1
0
07 Dec 2021
Learning Effective and Efficient Embedding via an Adaptively-Masked
  Twins-based Layer
Learning Effective and Efficient Embedding via an Adaptively-Masked Twins-based Layer
Bencheng Yan
Pengjie Wang
Kai Zhang
Wei Lin
Kuang-chih Lee
Jian Xu
Bo Zheng
29
26
0
24 Aug 2021
Random Offset Block Embedding Array (ROBE) for CriteoTB Benchmark MLPerf
  DLRM Model : 1000$\times$ Compression and 3.1$\times$ Faster Inference
Random Offset Block Embedding Array (ROBE) for CriteoTB Benchmark MLPerf DLRM Model : 1000×\times× Compression and 3.1×\times× Faster Inference
Aditya Desai
Li Chou
Anshumali Shrivastava
AI4CE
25
6
0
04 Aug 2021
AutoLoss: Automated Loss Function Search in Recommendations
AutoLoss: Automated Loss Function Search in Recommendations
Xiangyu Zhao
Haochen Liu
Wenqi Fan
Hui Liu
Jiliang Tang
Chong Wang
30
60
0
12 Jun 2021
Learnable Embedding Sizes for Recommender Systems
Learnable Embedding Sizes for Recommender Systems
Siyi Liu
Chen Gao
Yihong Chen
Depeng Jin
Yong Li
61
83
0
19 Jan 2021
Understanding Training Efficiency of Deep Learning Recommendation Models
  at Scale
Understanding Training Efficiency of Deep Learning Recommendation Models at Scale
Bilge Acun
Matthew Murphy
Xiaodong Wang
Jade Nie
Carole-Jean Wu
K. Hazelwood
36
109
0
11 Nov 2020
Mixed-Precision Embedding Using a Cache
Mixed-Precision Embedding Using a Cache
J. Yang
Jianyu Huang
Jongsoo Park
P. T. P. Tang
Andrew Tulloch
27
36
0
21 Oct 2020
DeepRecSys: A System for Optimizing End-To-End At-scale Neural
  Recommendation Inference
DeepRecSys: A System for Optimizing End-To-End At-scale Neural Recommendation Inference
Udit Gupta
Samuel Hsia
V. Saraph
Xiaodong Wang
Brandon Reagen
Gu-Yeon Wei
Hsien-Hsin S. Lee
David Brooks
Carole-Jean Wu
GNN
36
188
0
08 Jan 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
245
1,826
0
17 Sep 2019
1