Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.11515
Cited By
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
25 September 2019
Tianyu Pang
Kun Xu
Jun Zhu
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks"
34 / 34 papers shown
Title
Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment
Di Jin
Zhijing Jin
Qiufeng Wang
Peter Szolovits
SILM
AAML
146
1,076
0
27 Jul 2019
Data Interpolating Prediction: Alternative Interpretation of Mixup
Takuya Shimada
Shoichiro Yamaguchi
K. Hayashi
Sosuke Kobayashi
62
7
0
20 Jun 2019
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Too Much Accuracy
Alex Lamb
Vikas Verma
Kenji Kawaguchi
Alexander Matyasko
Savya Khosla
Arno Solin
Yoshua Bengio
AAML
47
99
0
16 Jun 2019
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
137
3,022
0
06 May 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
122
1,242
0
29 Apr 2019
Interpolation Consistency Training for Semi-Supervised Learning
Vikas Verma
Kenji Kawaguchi
Alex Lamb
Arno Solin
Arno Solin
Yoshua Bengio
David Lopez-Paz
101
769
0
09 Mar 2019
On Adversarial Mixup Resynthesis
Christopher Beckham
S. Honari
Vikas Verma
Alex Lamb
F. Ghadiri
R. Devon Hjelm
Yoshua Bengio
C. Pal
AAML
43
12
0
07 Mar 2019
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELM
AAML
79
900
0
18 Feb 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
118
2,542
0
24 Jan 2019
MixUp as Locally Linear Out-Of-Manifold Regularization
Hongyu Guo
Yongyi Mao
Richong Zhang
55
323
0
07 Sep 2018
Adversarial Attack on Graph Structured Data
H. Dai
Hui Li
Tian Tian
Xin Huang
L. Wang
Jun Zhu
Le Song
GNN
AAML
OOD
83
771
0
06 Jun 2018
Adversarial Attacks and Defences Competition
Alexey Kurakin
Ian Goodfellow
Samy Bengio
Yinpeng Dong
Fangzhou Liao
...
Junjiajia Long
Yerkebulan Berdibekov
Takuya Akiba
Seiya Tokui
Motoki Abe
AAML
SILM
86
320
0
31 Mar 2018
Max-Mahalanobis Linear Discriminant Analysis Networks
Tianyu Pang
Chao Du
Jun Zhu
56
55
0
26 Feb 2018
Adversarial vulnerability for any classifier
Alhussein Fawzi
Hamza Fawzi
Omar Fawzi
AAML
70
249
0
23 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
183
3,180
0
01 Feb 2018
Data Augmentation by Pairing Samples for Images Classification
H. Inoue
136
422
0
09 Jan 2018
Audio Adversarial Examples: Targeted Attacks on Speech-to-Text
Nicholas Carlini
D. Wagner
AAML
88
1,077
0
05 Jan 2018
Exploring the Landscape of Spatial Robustness
Logan Engstrom
Brandon Tran
Dimitris Tsipras
Ludwig Schmidt
Aleksander Madry
AAML
75
363
0
07 Dec 2017
Between-class Learning for Image Classification
Yuji Tokozume
Yoshitaka Ushiku
Tatsuya Harada
SSL
68
205
0
28 Nov 2017
Learning from Between-class Examples for Deep Sound Recognition
Yuji Tokozume
Yoshitaka Ushiku
Tatsuya Harada
SSL
72
237
0
28 Nov 2017
Mitigating Adversarial Effects Through Randomization
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Zhou Ren
Alan Yuille
AAML
99
1,054
0
06 Nov 2017
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
102
1,400
0
31 Oct 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
269
9,743
0
25 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
263
12,029
0
19 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
118
1,854
0
20 May 2017
Adversarial Attacks on Neural Network Policies
Sandy Huang
Nicolas Papernot
Ian Goodfellow
Yan Duan
Pieter Abbeel
MLAU
AAML
81
837
0
08 Feb 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
308
4,623
0
10 Nov 2016
Robustness of classifiers: from adversarial to random noise
Alhussein Fawzi
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
57
374
0
31 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
517
5,885
0
08 Jul 2016
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
324
10,172
0
16 Mar 2016
Exploring the Space of Adversarial Images
Pedro Tabacof
Eduardo Valle
AAML
57
192
0
19 Oct 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
225
19,017
0
20 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
153
3,270
0
05 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
233
14,893
1
21 Dec 2013
1