Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.11150
Cited By
Exascale Deep Learning for Scientific Inverse Problems
24 September 2019
N. Laanait
Josh Romero
Junqi Yin
M. T. Young
Sean Treichler
V. Starchenko
A. Borisevich
Alexander Sergeev
Michael A. Matheson
FedML
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exascale Deep Learning for Scientific Inverse Problems"
4 / 4 papers shown
Title
Integrating Deep Learning in Domain Sciences at Exascale
Rick Archibald
E. Chow
E. DÁzevedo
Jack J. Dongarra
M. Eisenbach
...
Florent Lopez
Daniel Nichols
S. Tomov
Kwai Wong
Junqi Yin
PINN
23
5
0
23 Nov 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
34
79
0
17 Sep 2020
Bayesian Neural Networks at Scale: A Performance Analysis and Pruning Study
Himanshu Sharma
Elise Jennings
BDL
27
3
0
23 May 2020
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
446
15,639
0
02 Nov 2015
1