ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.11150
  4. Cited By
Exascale Deep Learning for Scientific Inverse Problems

Exascale Deep Learning for Scientific Inverse Problems

24 September 2019
N. Laanait
Josh Romero
Junqi Yin
M. T. Young
Sean Treichler
V. Starchenko
A. Borisevich
Alexander Sergeev
Michael A. Matheson
    FedML
    BDL
ArXivPDFHTML

Papers citing "Exascale Deep Learning for Scientific Inverse Problems"

4 / 4 papers shown
Title
Integrating Deep Learning in Domain Sciences at Exascale
Integrating Deep Learning in Domain Sciences at Exascale
Rick Archibald
E. Chow
E. DÁzevedo
Jack J. Dongarra
M. Eisenbach
...
Florent Lopez
Daniel Nichols
S. Tomov
Kwai Wong
Junqi Yin
PINN
23
5
0
23 Nov 2020
Review: Deep Learning in Electron Microscopy
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
34
79
0
17 Sep 2020
Bayesian Neural Networks at Scale: A Performance Analysis and Pruning
  Study
Bayesian Neural Networks at Scale: A Performance Analysis and Pruning Study
Himanshu Sharma
Elise Jennings
BDL
27
3
0
23 May 2020
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
446
15,639
0
02 Nov 2015
1