ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.10911
  4. Cited By
Layerwise Relevance Visualization in Convolutional Text Graph
  Classifiers

Layerwise Relevance Visualization in Convolutional Text Graph Classifiers

24 September 2019
Robert Schwarzenberg
Marc Hübner
David Harbecke
Christoph Alt
Leonhard Hennig
    FAtt
    GNN
ArXivPDFHTML

Papers citing "Layerwise Relevance Visualization in Convolutional Text Graph Classifiers"

13 / 13 papers shown
Title
Explainable Graph Neural Networks Under Fire
Explainable Graph Neural Networks Under Fire
Zhong Li
Simon Geisler
Yuhang Wang
Stephan Günnemann
M. Leeuwen
AAML
43
0
0
10 Jun 2024
DEGREE: Decomposition Based Explanation For Graph Neural Networks
DEGREE: Decomposition Based Explanation For Graph Neural Networks
Qizhang Feng
Ninghao Liu
Fan Yang
Ruixiang Tang
Mengnan Du
Xia Hu
27
22
0
22 May 2023
Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
  Network for Spatio-temporal Forecasting
Dynamic Causal Explanation Based Diffusion-Variational Graph Neural Network for Spatio-temporal Forecasting
G. Liang
Prayag Tiwari
Sławomir Nowaczyk
Stefan Byttner
F. Alonso-Fernandez
DiffM
44
13
0
16 May 2023
MEGAN: Multi-Explanation Graph Attention Network
MEGAN: Multi-Explanation Graph Attention Network
Jonas Teufel
Luca Torresi
Patrick Reiser
Pascal Friederich
26
8
0
23 Nov 2022
L2XGNN: Learning to Explain Graph Neural Networks
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
40
7
0
28 Sep 2022
Defending Against Backdoor Attack on Graph Nerual Network by
  Explainability
Defending Against Backdoor Attack on Graph Nerual Network by Explainability
B. Jiang
Zhao Li
AAML
GNN
64
16
0
07 Sep 2022
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and
  Privacy Protection
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Bingzhe Wu
Jintang Li
Junchi Yu
Yatao Bian
Hengtong Zhang
...
Guangyu Sun
Peng Cui
Zibin Zheng
Zhe Liu
P. Zhao
OOD
45
25
0
20 May 2022
HistoCartography: A Toolkit for Graph Analytics in Digital Pathology
HistoCartography: A Toolkit for Graph Analytics in Digital Pathology
Guillaume Jaume
Pushpak Pati
Valentin Anklin
A. Foncubierta
M. Gabrani
35
45
0
21 Jul 2021
A Survey on Graph-Based Deep Learning for Computational Histopathology
A Survey on Graph-Based Deep Learning for Computational Histopathology
David Ahmedt-Aristizabal
M. Armin
Simon Denman
Clinton Fookes
L. Petersson
GNN
AI4CE
21
108
0
01 Jul 2021
Quantifying Explainers of Graph Neural Networks in Computational
  Pathology
Quantifying Explainers of Graph Neural Networks in Computational Pathology
Guillaume Jaume
Pushpak Pati
Behzad Bozorgtabar
Antonio Foncubierta-Rodríguez
Florinda Feroce
A. Anniciello
T. Rau
Jean-Philippe Thiran
M. Gabrani
O. Goksel
FAtt
26
76
0
25 Nov 2020
Interpreting Graph Neural Networks for NLP With Differentiable Edge
  Masking
Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking
M. Schlichtkrull
Nicola De Cao
Ivan Titov
AI4CE
36
214
0
01 Oct 2020
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Thomas Schnake
Oliver Eberle
Jonas Lederer
Shinichi Nakajima
Kristof T. Schütt
Klaus-Robert Muller
G. Montavon
34
217
0
05 Jun 2020
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1