Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.10461
Cited By
Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods
19 September 2019
Ferdinando Fioretto
Terrence W.K. Mak
Pascal Van Hentenryck
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods"
21 / 21 papers shown
Title
Generative Edge Detection with Stable Diffusion
Caixia Zhou
Yaping Huang
Mochu Xiang
Jiahui Ren
Haibin Ling
Jing Zhang
56
0
0
04 Oct 2024
Dual Interior Point Optimization Learning
Michael Klamkin
Mathieu Tanneau
Pascal Van Hentenryck
23
2
0
04 Feb 2024
Approximating Solutions to the Knapsack Problem using the Lagrangian Dual Framework
Mitchell Keegan
Mahdi Abolghasemi
51
0
0
06 Dec 2023
Optimal Power Flow in Highly Renewable Power System Based on Attention Neural Networks
Chen Li
Alexander Kies
Kai Zhou
Markus Schlott
O. Sayed
Mariia Bilousova
Horst Stoecker
19
4
0
23 Nov 2023
Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and Optimization
James Kotary
Vincenzo Di Vito
Jacob K Christopher
Pascal Van Hentenryck
Ferdinando Fioretto
34
3
0
22 Nov 2023
Data-driven decision-focused surrogate modeling
Rishabh Gupta
Qi Zhang
OffRL
AI4CE
25
12
0
23 Aug 2023
Enriching Neural Network Training Dataset to Improve Worst-Case Performance Guarantees
Rahul Nellikkath
Spyros Chatzivasileiadis
36
3
0
23 Mar 2023
Compact Optimization Learning for AC Optimal Power Flow
Seonho Park
Wenbo Chen
Terrence W.K. Mak
Pascal Van Hentenryck
22
17
0
21 Jan 2023
Minimizing Worst-Case Violations of Neural Networks
Rahul Nellikkath
Spyros Chatzivasileiadis
38
3
0
21 Dec 2022
AutoML for Climate Change: A Call to Action
Renbo Tu
Nicholas Roberts
Vishak Prasad
Sibasis Nayak
P. Jain
Frederic Sala
Ganesh Ramakrishnan
Ameet Talwalkar
W. Neiswanger
Colin White
30
6
0
07 Oct 2022
Self-Supervised Primal-Dual Learning for Constrained Optimization
Seonho Park
Pascal Van Hentenryck
30
46
0
18 Aug 2022
Risk-Aware Control and Optimization for High-Renewable Power Grids
Neil Barry
Minas Chatzos
Wenbo Chen
Dahye Han
Chao-Ming Huang
...
Mathieu Tanneau
Pascal Van Hentenryck
Shangkun Wang
Hanyu Zhang
Haoruo Zhao
25
7
0
02 Apr 2022
Learning Optimization Proxies for Large-Scale Security-Constrained Economic Dispatch
Wenbo Chen
Seonho Park
Mathieu Tanneau
Pascal Van Hentenryck
19
42
0
27 Dec 2021
OPF-Learn: An Open-Source Framework for Creating Representative AC Optimal Power Flow Datasets
Trager Joswig-Jones
K. Baker
Ahmed S. Zamzam
15
25
0
01 Nov 2021
Data-Driven Time Series Reconstruction for Modern Power Systems Research
Minas Chatzos
Mathieu Tanneau
Pascal Van Hentenryck
AI4TS
16
11
0
26 Oct 2021
A Review of Physics-based Machine Learning in Civil Engineering
S. Vadyala
S. N. Betgeri
J. Matthews
Elizabeth Matthews
AI4CE
25
152
0
09 Oct 2021
Physics-Informed Neural Networks for AC Optimal Power Flow
Rahul Nellikkath
Spyros Chatzivasileiadis
PINN
26
87
0
06 Oct 2021
Leveraging power grid topology in machine learning assisted optimal power flow
Thomas Falconer
Letif Mones
9
46
0
01 Oct 2021
Physics-Informed Neural Networks for Minimising Worst-Case Violations in DC Optimal Power Flow
Rahul Nellikkath
Spyros Chatzivasileiadis
PINN
9
32
0
28 Jun 2021
Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease Progression
Zhaozhi Qian
W. Zame
L. Fleuren
Paul Elbers
M. Schaar
OOD
19
53
0
05 Jun 2021
Neural Networks for Encoding Dynamic Security-Constrained Optimal Power Flow
Daniel Timon Viola
Andreas Venzke
George S. Misyris
Spyros Chatzivasileiadis
16
38
0
17 Mar 2020
1